BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 8903356)

  • 41. Expression of two different isoforms of fasciclin II during postembryonic central nervous system remodeling in Manduca sexta.
    Kuehn C; Duch C
    Cell Tissue Res; 2008 Dec; 334(3):477-98. PubMed ID: 18953569
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of lacZ-expressing cells in the gut of embryonic and adult DbetaH-nlacZ mice.
    Stewart AL; Anderson RB; Young HM
    J Comp Neurol; 2003 Sep; 464(2):208-19. PubMed ID: 12898613
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Migration of neural crest-derived enteric nervous system precursor cells to and within the gastrointestinal tract.
    Burns AJ
    Int J Dev Biol; 2005; 49(2-3):143-50. PubMed ID: 15906227
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of Gdnf haploinsufficiency on rate of migration and number of enteric neural crest-derived cells.
    Flynn B; Bergner AJ; Turner KN; Young HM; Anderson RB
    Dev Dyn; 2007 Jan; 236(1):134-41. PubMed ID: 17103416
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of different regions of the developing gut on the migration of enteric neural crest-derived cells: a role for Sema3A, but not Sema3F.
    Anderson RB; Bergner AJ; Taniguchi M; Fujisawa H; Forrai A; Robb L; Young HM
    Dev Biol; 2007 May; 305(1):287-99. PubMed ID: 17362911
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sacral neural crest cell migration to the gut is dependent upon the migratory environment and not cell-autonomous migratory properties.
    Erickson CA; Goins TL
    Dev Biol; 2000 Mar; 219(1):79-97. PubMed ID: 10677257
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In vitro formation of enteric neural network structure in a gut-like organ differentiated from mouse embryonic stem cells.
    Takaki M; Nakayama S; Misawa H; Nakagawa T; Kuniyasu H
    Stem Cells; 2006 Jun; 24(6):1414-22. PubMed ID: 16527901
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The migration of autonomic precursor cells in the embryo.
    Kulesa PM; Lefcort F; Kasemeier-Kulesa JC
    Auton Neurosci; 2009 Nov; 151(1):3-9. PubMed ID: 19783486
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lumbo-sacral neural crest contributes to the avian enteric nervous system independently of vagal neural crest.
    Hearn C; Newgreen D
    Dev Dyn; 2000 Jul; 218(3):525-30. PubMed ID: 10878617
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reverse signaling by glycosylphosphatidylinositol-linked Manduca ephrin requires a SRC family kinase to restrict neuronal migration in vivo.
    Coate TM; Swanson TL; Copenhaver PF
    J Neurosci; 2009 Mar; 29(11):3404-18. PubMed ID: 19295147
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Age-dependent changes in the gut environment restrict the invasion of the hindgut by enteric neural progenitors.
    Druckenbrod NR; Epstein ML
    Development; 2009 Sep; 136(18):3195-203. PubMed ID: 19700623
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mouse-isolated plexus differentiates neural crest precursors into enteric neuroblasts.
    Brizzolara A; Favre A; Schäfer KH; Michelazzi A; Sanguineti M; Martucciello G; Jasonni V
    Eur J Pediatr Surg; 2002 Dec; 12(6):391-6. PubMed ID: 12548492
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fetal development of the enteric nervous system of transgenic mice that overexpress the Hoxa-4 gene.
    Tennyson VM; Gershon MD; Wade PR; Crotty DA; Wolgemuth DJ
    Dev Dyn; 1998 Mar; 211(3):269-91. PubMed ID: 9520114
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Early stages of myogenesis as seen through the action of the myf-5 gene].
    Buckingham M
    C R Seances Soc Biol Fil; 1997; 191(1):43-54. PubMed ID: 9181127
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Embryonic development of the enteric nervous system of the grasshopper Schistocerca americana.
    Ganfornina MD; Sánchez D; Bastiani MJ
    J Comp Neurol; 1996 Sep; 372(4):581-96. PubMed ID: 8876455
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Segment-specific modifications of a neuropeptide phenotype in embryonic neurons of the moth, Manduca sexta.
    Wall JB; Taghert PH
    J Comp Neurol; 1991 Jul; 309(3):375-90. PubMed ID: 1918442
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Origins of the insect enteric nervous system: differentiation of the enteric ganglia from a neurogenic epithelium.
    Copenhaver PF; Taghert PH
    Development; 1991 Dec; 113(4):1115-32. PubMed ID: 1811931
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultrastructure of the developing muscle and enteric nervous system in the small intestine of human fetus.
    Benedeczky I; Fekete E; Resch B
    Acta Physiol Hung; 1993; 81(2):193-206. PubMed ID: 8197875
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Differentiation of the anterior body wall and truncal epidermis and associated co-migration of cutaneous nerves and mesenchyme.
    Munger GT; Munger BL
    Anat Rec; 1991 Oct; 231(2):261-74. PubMed ID: 1836119
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Differentiation of the zebrafish enteric nervous system and intestinal smooth muscle.
    Olden T; Akhtar T; Beckman SA; Wallace KN
    Genesis; 2008 Sep; 46(9):484-98. PubMed ID: 18781646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.