These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 8903358)

  • 41. Determination and morphogenesis in the sea urchin embryo.
    Wilt FH
    Development; 1987 Aug; 100(4):559-76. PubMed ID: 3443047
    [TBL] [Abstract][Full Text] [Related]  

  • 42. RhoA regulates initiation of invagination, but not convergent extension, during sea urchin gastrulation.
    Beane WS; Gross JM; McClay DR
    Dev Biol; 2006 Apr; 292(1):213-25. PubMed ID: 16458878
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inhibition of spicule elongation in sea urchin embryos by the acetylcholinesterase inhibitor eserine.
    Ohta K; Takahashi C; Tosuji H
    Comp Biochem Physiol B Biochem Mol Biol; 2009 Aug; 153(4):310-6. PubMed ID: 19383547
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multiple positive cis elements regulate the asymmetric expression of the SpHE gene along the sea urchin embryo animal-vegetal axis.
    Wei Z; Angerer LM; Angerer RC
    Dev Biol; 1997 Jul; 187(1):71-8. PubMed ID: 9224675
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regionalized Cell Division during Sea Urchin Gastrulation Contributes to Archenteron Formation and Is Correlated with the Establishment of Larval Symmetry: (sea urchin/gastrulation/cell division/autoradiography).
    Nislow C; Morrill JB
    Dev Growth Differ; 1988 Oct; 30(5):483-499. PubMed ID: 37281593
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Whole mount in situ hybridization shows Endo 16 to be a marker for the vegetal plate territory in sea urchin embryos.
    Ransick A; Ernst S; Britten RJ; Davidson EH
    Mech Dev; 1993 Aug; 42(3):117-24. PubMed ID: 8217840
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula.
    Ruffins SW; Ettensohn CA
    Development; 1996 Jan; 122(1):253-63. PubMed ID: 8565837
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos.
    Yaguchi S; Yaguchi J; Burke RD
    Development; 2006 Jun; 133(12):2337-46. PubMed ID: 16687447
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A role for regulated secretion of apical extracellular matrix during epithelial invagination in the sea urchin.
    Lane MC; Koehl MA; Wilt F; Keller R
    Development; 1993 Mar; 117(3):1049-60. PubMed ID: 8325234
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Expression of Spgatae, the Strongylocentrotus purpuratus ortholog of vertebrate GATA4/5/6 factors.
    Lee PY; Davidson EH
    Gene Expr Patterns; 2004 Dec; 5(2):161-5. PubMed ID: 15567710
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Origin of the prechordal plate and patterning of the anteroposterior regional specificity of the involuting and extending archenteron roof of a urodele, Cynops pyrrhogaster.
    Kaneda T; Iwamoto Y; Motoki JY
    Dev Biol; 2009 Oct; 334(1):84-96. PubMed ID: 19643103
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Studies on the cellular basis of morphogenesis in the sea urchin embryo. Directed movements of primary mesenchyme cells in normal and vegetalized larvae.
    Gustafson T; Wolpert L
    Exp Cell Res; 1999 Dec; 253(2):288-95. PubMed ID: 10585249
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A cell-based model of Nematostella vectensis gastrulation including bottle cell formation, invagination and zippering.
    Tamulonis C; Postma M; Marlow HQ; Magie CR; de Jong J; Kaandorp J
    Dev Biol; 2011 Mar; 351(1):217-28. PubMed ID: 20977902
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Partial exogastrulation due to apical-basal polarity of F-actin distribution disruption in sea urchin embryo by omeprazole.
    Watanabe K; Yasui Y; Kurose Y; Fujii M; Yamamoto T; Sakamoto N; Awazu A
    Genes Cells; 2022 Jun; 27(6):392-408. PubMed ID: 35347809
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Morphogenesis in sea urchin embryos: linking cellular events to gene regulatory network states.
    Lyons DC; Kaltenbach SL; McClay DR
    Wiley Interdiscip Rev Dev Biol; 2012; 1(2):231-52. PubMed ID: 23801438
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Very early and transient vegetal-plate expression of SpKrox1, a Krüppel/Krox gene from Stronglyocentrotus purpuratus.
    Wang W; Wikramanayake AH; Gonzalez-Rimbau M; Vlahou A; Flytzanis CN; Klein WH
    Mech Dev; 1996 Dec; 60(2):185-95. PubMed ID: 9025071
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional gap junctions in the early sea urchin embryo are localized to the vegetal pole.
    Yazaki I; Dale B; Tosti E
    Dev Biol; 1999 Aug; 212(2):503-10. PubMed ID: 10433838
    [TBL] [Abstract][Full Text] [Related]  

  • 58. LiCl perturbs ectodermal veg1 lineage allocations in Strongylocentrotus purpuratus embryos.
    Cameron RA; Davidson EH
    Dev Biol; 1997 Jul; 187(2):236-9. PubMed ID: 9242420
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Frizzled5/8 is required in secondary mesenchyme cells to initiate archenteron invagination during sea urchin development.
    Croce J; Duloquin L; Lhomond G; McClay DR; Gache C
    Development; 2006 Feb; 133(3):547-57. PubMed ID: 16396908
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Behavior and differentiation process of pigment cells in a tropical sea urchin Echinometra mathaei.
    Takata H; Kominami T
    Dev Growth Differ; 2003; 45(5-6):473-83. PubMed ID: 14706072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.