These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 8903675)
1. Oxygenation of biomembranes by mammalian lipoxygenases: the role of ubiquinone. Schnurr K; Hellwing M; Seidemann B; Jungblut P; Kuhn H; Rapoport SM; Schewe T Free Radic Biol Med; 1996; 20(1):11-21. PubMed ID: 8903675 [TBL] [Abstract][Full Text] [Related]
2. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase controls the activity of the 15-lipoxygenase with complex substrates and preserves the specificity of the oxygenation products. Schnurr K; Belkner J; Ursini F; Schewe T; Kühn H J Biol Chem; 1996 Mar; 271(9):4653-8. PubMed ID: 8617728 [TBL] [Abstract][Full Text] [Related]
3. Pro- and anti-oxidant activities of the mitochondrial respiratory chain: factors influencing NAD(P)H-induced lipid peroxidation. Glinn MA; Lee CP; Ernster L Biochim Biophys Acta; 1997 Jan; 1318(1-2):246-54. PubMed ID: 9030267 [TBL] [Abstract][Full Text] [Related]
4. 3,5-Di-t-butyl-4-hydroxytoluene (BHT) and probucol stimulate selectively the reaction of mammalian 15-lipoxygenase with biomembranes. Schnurr K; Kühn H; Rapoport SM; Schewe T Biochim Biophys Acta; 1995 Jan; 1254(1):66-72. PubMed ID: 7811748 [TBL] [Abstract][Full Text] [Related]
5. Direct interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c oxidoreductases probed by sensitivity to quinone-related inhibitors. Yamashita A; Miyoshi H; Hatano T; Iwamura H J Biochem; 1996 Aug; 120(2):377-84. PubMed ID: 8889824 [TBL] [Abstract][Full Text] [Related]
7. The inhibitory effect of extracts of cigarette tar on electron transport of mitochondria and submitochondrial particles. Pryor WA; Arbour NC; Upham B; Church DF Free Radic Biol Med; 1992; 12(5):365-72. PubMed ID: 1317324 [TBL] [Abstract][Full Text] [Related]
8. On the site of action of the inhibition of the mitochondrial respiratory chain by lipoxygenase. Schewe T; Albracht SP; Ludwig P Biochim Biophys Acta; 1981 Jul; 636(2):210-7. PubMed ID: 6269601 [TBL] [Abstract][Full Text] [Related]
9. Interactions between ubiquinones and vitamins in membranes and cells. Constantinescu A; Maguire JJ; Packer L Mol Aspects Med; 1994; 15 Suppl():s57-65. PubMed ID: 7752845 [TBL] [Abstract][Full Text] [Related]
10. Occurrence of 9- and 13-keto-octadecadienoic acid in biological membranes oxygenated by the reticulocyte lipoxygenase. Kühn H; Belkner J; Wiesner R; Alder L Arch Biochem Biophys; 1990 Jun; 279(2):218-24. PubMed ID: 2112367 [TBL] [Abstract][Full Text] [Related]
11. Coenzyme Q deficiency in mitochondria: kinetic saturation versus physical saturation. Lenaz G; Parenti Castelli G; Fato ; D'Aurelio M; Bovina C; Formiggini G; Marchetti M; Estornell E; Rauchova H Mol Aspects Med; 1997; 18 Suppl():S25-31. PubMed ID: 9266503 [TBL] [Abstract][Full Text] [Related]
12. Haemoglobin potentiates the respiration-inhibitory action of lipoxygenases via its pseudolipohydroperoxidase activity. Schewe T; Hiebsch C; Ludwig P; Rapoport SM Biomed Biochim Acta; 1983; 42(7-8):789-803. PubMed ID: 6418158 [TBL] [Abstract][Full Text] [Related]
13. Oxygenation of biological membranes by the pure reticulocyte lipoxygenase. Kuhn H; Belkner J; Wiesner R; Brash AR J Biol Chem; 1990 Oct; 265(30):18351-61. PubMed ID: 2120232 [TBL] [Abstract][Full Text] [Related]
14. Formation of keto and hydroxy compounds of linoleic acid in submitochondrial particles of bovine heart. Iwase H; Takatori T; Nagao M; Nijima H; Iwadate K; Matsuda Y; Kobayashi M Free Radic Biol Med; 1998 Jun; 24(9):1492-503. PubMed ID: 9641268 [TBL] [Abstract][Full Text] [Related]
15. Localization of a ferricyanide-reactive site of cytochrome b-c1 complex, possibly of cytochrome b or ubisemiquinone, at the outer face of submitochondrial particles. Kunz WS; Konstantinov A; Tsofina L; Liberman EA FEBS Lett; 1984 Jul; 172(2):261-6. PubMed ID: 6086391 [TBL] [Abstract][Full Text] [Related]
16. NADH- and NADPH-dependent formation of superoxide anions by bovine heart submitochondrial particles and NADH-ubiquinone reductase preparation. Takeshige K; Minakami S Biochem J; 1979 Apr; 180(1):129-35. PubMed ID: 39543 [TBL] [Abstract][Full Text] [Related]
17. Extraction and reincorporation of ubiquinone in submitochondrial particles. Ernster L; Glaser E; Norling B Methods Enzymol; 1978; 53():573-9. PubMed ID: 713856 [No Abstract] [Full Text] [Related]
18. The mode of action of lipid-soluble antioxidants in biological membranes: relationship between the effects of ubiquinol and vitamin E as inhibitors of lipid peroxidation in submitochondrial particles. Ernster L; Forsmark P; Nordenbrand K Biofactors; 1992 Apr; 3(4):241-8. PubMed ID: 1605833 [TBL] [Abstract][Full Text] [Related]
19. Ubisemiquinone radicals from the cytochrome b-c1 complex of the mitochondrial electron transport chain--demonstration of QP-S radical formation. Wei Y; Scholes CP; King TE Biochem Biophys Res Commun; 1981 Apr; 99(4):1411-9. PubMed ID: 6266422 [No Abstract] [Full Text] [Related]
20. Succinate-dependent lipid peroxidation and its prevention by reduced ubiquinone in beef heart submitochondrial particles. Eto Y; Kang D; Hasegawa E; Takeshige K; Minakami S Arch Biochem Biophys; 1992 May; 295(1):101-6. PubMed ID: 1575504 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]