These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 8903855)

  • 1. The molecules of proximal tubular transport: insights from electrophysiology.
    Busch AE; Waldegger S; Murer H; Lang F
    Nephron; 1996; 72(1):1-8. PubMed ID: 8903855
    [No Abstract]   [Full Text] [Related]  

  • 2. Function and dysfunction of renal transport molecules: lessons from electrophysiology.
    Waldegger S; Busch AE; Kern C; Capasso G; Murer H; Lang F
    Kidney Blood Press Res; 1996; 19(3-4):155-9. PubMed ID: 8887251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A view of type I and II Na+/P(i) transporters through microelectrodes.
    Busch AE
    Nephrol Dial Transplant; 1997 Apr; 12(4):638-40. PubMed ID: 9140982
    [No Abstract]   [Full Text] [Related]  

  • 4. Electrophysiological analysis of renal Na(+)-coupled divalent anion transporters.
    Forster I; Biber J; Murer H
    Pharm Biotechnol; 1999; 12():251-67. PubMed ID: 10742978
    [No Abstract]   [Full Text] [Related]  

  • 5. Na(+)-dependent orthophosphate and D-glucose symporters of the sheep parotid acinar cell: expression in Xenopus oocytes.
    Tarpey PS; Vayro S; Shirazi-Beechey SP; Beechey RB
    Biochem Soc Trans; 1992 Nov; 20(4):328S. PubMed ID: 1486995
    [No Abstract]   [Full Text] [Related]  

  • 6. Chronic K depletion inhibits renal brush border membrane Na/sulfate cotransport.
    Markovich D; Wang H; Puttaparthi K; Zajicek H; Rogers T; Murer H; Biber J; Levi M
    Kidney Int; 1999 Jan; 55(1):244-51. PubMed ID: 9893133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xenopus oocytes as an expression system for plant transporters.
    Miller AJ; Zhou JJ
    Biochim Biophys Acta; 2000 May; 1465(1-2):343-58. PubMed ID: 10748264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water transport by the renal Na(+)-dicarboxylate cotransporter.
    Meinild AK; Loo DD; Pajor AM; Zeuthen T; Wright EM
    Am J Physiol Renal Physiol; 2000 May; 278(5):F777-83. PubMed ID: 10807589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proximal tubular phosphate reabsorption: molecular mechanisms.
    Murer H; Hernando N; Forster I; Biber J
    Physiol Rev; 2000 Oct; 80(4):1373-409. PubMed ID: 11015617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of mouse organic anion transporter 5 as a renal steroid sulfate transporter.
    Kwak JO; Kim HW; Oh KJ; Ko CB; Park H; Cha SH
    J Steroid Biochem Mol Biol; 2005 Dec; 97(4):369-75. PubMed ID: 16150593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of functional GLUT1 by co-expression of N- and C-terminal half molecules in Xenopus oocytes.
    Preston RA; Sami AJ; Charalambous BM; Baldwin SA
    Biochem Soc Trans; 1994 Aug; 22(3):276S. PubMed ID: 7821535
    [No Abstract]   [Full Text] [Related]  

  • 12. Basolateral localization of organic cation transporter 2 in intact renal proximal tubules.
    Sweet DH; Miller DS; Pritchard JB
    Am J Physiol Renal Physiol; 2000 Nov; 279(5):F826-34. PubMed ID: 11053042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interference of L-arginine analogues with L-arginine transport mediated by the y+ carrier hCAT-2B.
    Closs EI; Basha FZ; Habermeier A; Förstermann U
    Nitric Oxide; 1997 Feb; 1(1):65-73. PubMed ID: 9701046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycosphingolipids modulate renal phosphate transport in potassium deficiency.
    Zajicek HK; Wang H; Puttaparthi K; Halaihel N; Markovich D; Shayman J; Béliveau R; Wilson P; Rogers T; Levi M
    Kidney Int; 2001 Aug; 60(2):694-704. PubMed ID: 11473652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kidney cortex cells derived from SV40 transgenic mice retain intrinsic properties of polarized proximal tubule cells.
    Chalumeau C; Lamblin D; Bourgeois S; Borensztein P; Chambrey R; Bruneval P; Huyen JP; Froissart M; Biber J; Paillard M; Kellermann O; Poggioli J
    Kidney Int; 1999 Aug; 56(2):559-70. PubMed ID: 10432395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfate transporters involved in sulfate secretion in the kidney are localized in the renal proximal tubule II of the elephant fish (Callorhinchus milii).
    Hasegawa K; Kato A; Watanabe T; Takagi W; Romero MF; Bell JD; Toop T; Donald JA; Hyodo S
    Am J Physiol Regul Integr Comp Physiol; 2016 Jul; 311(1):R66-78. PubMed ID: 27122370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning of a rabbit renal Na-Pi cotransporter, which is regulated by dietary phosphate.
    Verri T; Markovich D; Perego C; Norbis F; Stange G; Sorribas V; Biber J; Murer H
    Am J Physiol; 1995 Apr; 268(4 Pt 2):F626-33. PubMed ID: 7733319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of metabolic substrates by the proximal nephron.
    Schafer JA; Williams JC
    Annu Rev Physiol; 1985; 47():103-25. PubMed ID: 2581501
    [No Abstract]   [Full Text] [Related]  

  • 19. Molecular mechanisms in the regulation of renal proximal tubular Na/phosphate cotransport.
    Murer H; Lötscher M; Kaissling B; Biber J
    Kidney Blood Press Res; 1996; 19(3-4):151-4. PubMed ID: 8887250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analysis of NBC1 mutants associated with proximal renal tubular acidosis and ocular abnormalities.
    Horita S; Yamada H; Inatomi J; Moriyama N; Sekine T; Igarashi T; Endo Y; Dasouki M; Ekim M; Al-Gazali L; Shimadzu M; Seki G; Fujita T
    J Am Soc Nephrol; 2005 Aug; 16(8):2270-8. PubMed ID: 15930088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.