BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 8904006)

  • 41. Detection of hypoxia-evoked ATP release from chemoreceptor cells of the rat carotid body.
    Buttigieg J; Nurse CA
    Biochem Biophys Res Commun; 2004 Sep; 322(1):82-7. PubMed ID: 15313176
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia.
    López-Barneo J; González-Rodríguez P; Gao L; Fernández-Agüera MC; Pardal R; Ortega-Sáenz P
    Am J Physiol Cell Physiol; 2016 Apr; 310(8):C629-42. PubMed ID: 26764048
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Physiology of the Carotid Body: From Molecules to Disease.
    Ortega-Sáenz P; López-Barneo J
    Annu Rev Physiol; 2020 Feb; 82():127-149. PubMed ID: 31618601
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chronic caffeine intake in adult rat inhibits carotid body sensitization produced by chronic sustained hypoxia but maintains intact chemoreflex output.
    Conde SV; Ribeiro MJ; Obeso A; Rigual R; Monteiro EC; Gonzalez C
    Mol Pharmacol; 2012 Dec; 82(6):1056-65. PubMed ID: 22930709
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neurochemical Plasticity of the Carotid Body.
    Lazarov NE; Atanasova DY
    Adv Anat Embryol Cell Biol; 2023; 237():105-122. PubMed ID: 37946079
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Oxygen sensing and stem cell activation in the hypoxic carotid body.
    López-Barneo J
    Cell Tissue Res; 2018 May; 372(2):417-425. PubMed ID: 29368257
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Is ATP a suitable co-transmitter in carotid body arterial chemoreceptors?
    Zapata P
    Respir Physiol Neurobiol; 2007 Jul; 157(1):106-15. PubMed ID: 17276149
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Correlation between adenosine triphosphate levels, dopamine release and electrical activity in the carotid body: support for the metabolic hypothesis of chemoreception.
    Obeso A; Almaraz L; Gonzalez C
    Brain Res; 1985 Nov; 348(1):64-8. PubMed ID: 4063828
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Developmental changes in chemoreceptor nerve activity and catecholamine secretion in rabbit carotid body: possible role of Na+ and Ca2+ currents.
    Rigual R; Almaraz L; González C; Donnelly DF
    Pflugers Arch; 2000 Feb; 439(4):463-70. PubMed ID: 10678743
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interaction of dopamine and haloperidol with O2 and CO2 chemoreception in carotid body.
    Lahiri S; Nishino T; Mokashi A; Mulligan E
    J Appl Physiol Respir Environ Exerc Physiol; 1980 Jul; 49(1):45-51. PubMed ID: 6772612
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Low glucose effects on rat carotid body chemoreceptor cells' secretory responses and action potential frequency in the carotid sinus nerve.
    Conde SV; Obeso A; Gonzalez C
    J Physiol; 2007 Dec; 585(Pt 3):721-30. PubMed ID: 17947309
    [TBL] [Abstract][Full Text] [Related]  

  • 52. General Morphology of the Mammalian Carotid Body.
    Lazarov NE; Atanasova DY
    Adv Anat Embryol Cell Biol; 2023; 237():13-35. PubMed ID: 37946075
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evidence for protein kinase involvement in the 5-HT-[Ca
    Leonard EM; Zhang M; Nurse CA
    Exp Physiol; 2019 Feb; 104(2):244-253. PubMed ID: 30456914
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Release of substance P by low oxygen in the rabbit carotid body: evidence for the involvement of calcium channels.
    Kim DK; Oh EK; Summers BA; Prabhakar NR; Kumar GK
    Brain Res; 2001 Feb; 892(2):359-69. PubMed ID: 11172784
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A revisit to O2 sensing and transduction in the carotid body chemoreceptors in the context of reactive oxygen species biology.
    Gonzalez C; Agapito MT; Rocher A; Gomez-Niño A; Rigual R; Castañeda J; Conde SV; Obeso A
    Respir Physiol Neurobiol; 2010 Dec; 174(3):317-30. PubMed ID: 20833275
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chemoreceptor activity is normal in mice lacking the NK1 receptor.
    Rigual R; Rico AJ; Prieto-Lloret J; de Felipe C; González C; Donnelly DF
    Eur J Neurosci; 2002 Dec; 16(11):2078-84. PubMed ID: 12473075
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synaptic and paracrine mechanisms at carotid body arterial chemoreceptors.
    Nurse CA
    J Physiol; 2014 Aug; 592(16):3419-26. PubMed ID: 24665097
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Concomitant effect of acetylcholine and dopamine on carotid chemosensory activity in catecholamine depleted cats.
    Bairam A; Lajeunesse Y
    Adv Exp Med Biol; 2003; 536():337-43. PubMed ID: 14635686
    [No Abstract]   [Full Text] [Related]  

  • 59. O2-sensing after carotid chemodenervation: hypoxic ventilatory responsiveness and upregulation of tyrosine hydroxylase mRNA in brainstem catecholaminergic cells.
    Roux JC; Pequignot JM; Dumas S; Pascual O; Ghilini G; Pequignot J; Mallet J; Denavit-Saubié M
    Eur J Neurosci; 2000 Sep; 12(9):3181-90. PubMed ID: 10998102
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A crucial role for hydrogen sulfide in oxygen sensing via modulating large conductance calcium-activated potassium channels.
    Li Q; Sun B; Wang X; Jin Z; Zhou Y; Dong L; Jiang LH; Rong W
    Antioxid Redox Signal; 2010 May; 12(10):1179-89. PubMed ID: 19803741
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.