These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 8904562)

  • 1. Failure of prostaglandins to modulate the time course of blood flow during dynamic forearm exercise in humans.
    Shoemaker JK; Naylor HL; Pozeg ZI; Hughson RL
    J Appl Physiol (1985); 1996 Oct; 81(4):1516-21. PubMed ID: 8904562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time course of brachial artery diameter responses to rhythmic handgrip exercise in humans.
    Shoemaker JK; MacDonald MJ; Hughson RL
    Cardiovasc Res; 1997 Jul; 35(1):125-31. PubMed ID: 9302356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upright posture reduces forearm blood flow early in exercise.
    Shoemaker JK; McQuillan PM; Sinoway LI
    Am J Physiol; 1999 May; 276(5):R1434-42. PubMed ID: 10233037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local inhibition of nitric oxide and prostaglandins independently reduces forearm exercise hyperaemia in humans.
    Schrage WG; Joyner MJ; Dinenno FA
    J Physiol; 2004 Jun; 557(Pt 2):599-611. PubMed ID: 15047770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions of acetylcholine and nitric oxide to forearm blood flow at exercise onset and recovery.
    Shoemaker JK; Halliwill JR; Hughson RL; Joyner MJ
    Am J Physiol; 1997 Nov; 273(5):H2388-95. PubMed ID: 9374776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forearm blood flow by Doppler ultrasound during test and exercise: tests of day-to-day repeatability.
    Shoemaker JK; Pozeg ZI; Hughson RL
    Med Sci Sports Exerc; 1996 Sep; 28(9):1144-9. PubMed ID: 8883002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vasodilation contributes to the rapid hyperemia with rhythmic contractions in humans.
    Shoemaker JK; Tschakovsky ME; Hughson RL
    Can J Physiol Pharmacol; 1998 Apr; 76(4):418-27. PubMed ID: 9795751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of combined inhibition of ATP-sensitive potassium channels, nitric oxide, and prostaglandins on hyperemia during moderate exercise.
    Schrage WG; Dietz NM; Joyner MJ
    J Appl Physiol (1985); 2006 May; 100(5):1506-12. PubMed ID: 16469932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of nitric oxide and prostaglandins to reactive hyperemia in human forearm.
    Engelke KA; Halliwill JR; Proctor DN; Dietz NM; Joyner MJ
    J Appl Physiol (1985); 1996 Oct; 81(4):1807-14. PubMed ID: 8904603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ageing reduces nitric-oxide- and prostaglandin-mediated vasodilatation in exercising humans.
    Schrage WG; Eisenach JH; Joyner MJ
    J Physiol; 2007 Feb; 579(Pt 1):227-36. PubMed ID: 17138603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Augmented skeletal muscle hyperaemia during hypoxic exercise in humans is blunted by combined inhibition of nitric oxide and vasodilating prostaglandins.
    Crecelius AR; Kirby BS; Voyles WF; Dinenno FA
    J Physiol; 2011 Jul; 589(Pt 14):3671-83. PubMed ID: 21624968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of combined NO and PG blockade on rapid vasodilation in a forearm mild-to-moderate exercise transition in humans.
    Saunders NR; Dinenno FA; Pyke KE; Rogers AM; Tschakovsky ME
    Am J Physiol Heart Circ Physiol; 2005 Jan; 288(1):H214-20. PubMed ID: 15345484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics and effectiveness of vasodilatory and pressor compensation for reduced relaxation time during rhythmic forearm contractions.
    Bentley RF; Poitras VJ; Hong T; Tschakovsky ME
    Exp Physiol; 2017 Jun; 102(6):621-634. PubMed ID: 28397384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forearm blood flow follows work rate during submaximal dynamic forearm exercise independent of sex.
    Gonzales JU; Thompson BC; Thistlethwaite JR; Harper AJ; Scheuermann BW
    J Appl Physiol (1985); 2007 Dec; 103(6):1950-7. PubMed ID: 17932302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of caffeine on blood pressure, heart rate, and forearm blood flow during dynamic leg exercise.
    Daniels JW; Molé PA; Shaffrath JD; Stebbins CL
    J Appl Physiol (1985); 1998 Jul; 85(1):154-9. PubMed ID: 9655769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beat-by-beat forearm blood flow with Doppler ultrasound and strain-gauge plethysmography.
    Tschakovsky ME; Shoemaker JK; Hughson RL
    J Appl Physiol (1985); 1995 Sep; 79(3):713-9. PubMed ID: 8567508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brachial arterial blood flow during static handgrip exercise of short duration at varying intensities studied by a Doppler ultrasound method.
    Kagaya A; Homma S
    Acta Physiol Scand; 1997 Jul; 160(3):257-65. PubMed ID: 9246389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide, but not vasodilating prostaglandins, contributes to the improvement of exercise hyperemia via ascorbic acid in healthy older adults.
    Crecelius AR; Kirby BS; Voyles WF; Dinenno FA
    Am J Physiol Heart Circ Physiol; 2010 Nov; 299(5):H1633-41. PubMed ID: 20817831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence of muscle VO2 on blood flow dynamics at onset of forearm exercise.
    Hughson RL; Shoemaker JK; Tschakovsky ME; Kowalchuk JM
    J Appl Physiol (1985); 1996 Oct; 81(4):1619-26. PubMed ID: 8904578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supplementation with omega-3 polyunsaturated fatty acids augments brachial artery dilation and blood flow during forearm contraction.
    Walser B; Giordano RM; Stebbins CL
    Eur J Appl Physiol; 2006 Jun; 97(3):347-54. PubMed ID: 16770472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.