These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
493 related articles for article (PubMed ID: 8904603)
41. The contribution of nitric oxide and vasodilatory prostanoids to bradykinin-mediated vasodilation in Type 1 diabetes. Wotherspoon F; Browne DL; Meeking DR; Allard SE; Munday LJ; Shaw KM; Cummings MH Diabet Med; 2005 Jun; 22(6):697-702. PubMed ID: 15910619 [TBL] [Abstract][Full Text] [Related]
42. Role of nitric oxide in adenosine-induced vasodilation in humans. Costa F; Biaggioni I Hypertension; 1998 May; 31(5):1061-4. PubMed ID: 9576114 [TBL] [Abstract][Full Text] [Related]
43. Sex differences in salt sensitivity to nitric oxide dependent vasodilation in healthy young adults. Eisenach JH; Gullixson LR; Kost SL; Joyner MJ; Turner ST; Nicholson WT J Appl Physiol (1985); 2012 Mar; 112(6):1049-53. PubMed ID: 22194324 [TBL] [Abstract][Full Text] [Related]
44. Contributions of acetylcholine and nitric oxide to forearm blood flow at exercise onset and recovery. Shoemaker JK; Halliwill JR; Hughson RL; Joyner MJ Am J Physiol; 1997 Nov; 273(5):H2388-95. PubMed ID: 9374776 [TBL] [Abstract][Full Text] [Related]
45. Impaired nitric oxide-mediated vasodilatation and total body nitric oxide production in healthy old age. Lyons D; Roy S; Patel M; Benjamin N; Swift CG Clin Sci (Lond); 1997 Dec; 93(6):519-25. PubMed ID: 9497788 [TBL] [Abstract][Full Text] [Related]
46. Effects of chronic sympathectomy on vascular function in the human forearm. Eisenach JH; Clark ES; Charkoudian N; Dinenno FA; Atkinson JL; Fealey RD; Dietz NM; Joyner MJ J Appl Physiol (1985); 2002 May; 92(5):2019-25. PubMed ID: 11960953 [TBL] [Abstract][Full Text] [Related]
47. Serum nitrite sensitively reflects endothelial NO formation in human forearm vasculature: evidence for biochemical assessment of the endothelial L-arginine-NO pathway. Kelm M; Preik-Steinhoff H; Preik M; Strauer BE Cardiovasc Res; 1999 Mar; 41(3):765-72. PubMed ID: 10435049 [TBL] [Abstract][Full Text] [Related]
48. Forearm reactive hyperaemia is not mediated by nitric oxide in healthy volunteers. Nugent AG; McGurk C; McAuley D; Maguire S; Silke B; Johnston GD Br J Clin Pharmacol; 1999 Sep; 48(3):457-9. PubMed ID: 10510162 [TBL] [Abstract][Full Text] [Related]
49. [Role of endothelium-derived nitric oxide in sustained flow-dependent dilatation of human peripheral conduit arteries]. Bellien J; Joannidès R; Iacob M; Eltchaninoff H; Thuillez Ch Arch Mal Coeur Vaiss; 2003; 96(7-8):738-41. PubMed ID: 12945214 [TBL] [Abstract][Full Text] [Related]
50. Contribution of endothelium-derived relaxing factor to exercise-induced vasodilation in humans. Wilson JR; Kapoor S J Appl Physiol (1985); 1993 Dec; 75(6):2740-4. PubMed ID: 8125898 [TBL] [Abstract][Full Text] [Related]
51. Endothelium-derived hyperpolarizing factor determines resting and stimulated forearm vasodilator tone in health and in disease. Ozkor MA; Murrow JR; Rahman AM; Kavtaradze N; Lin J; Manatunga A; Quyyumi AA Circulation; 2011 May; 123(20):2244-53. PubMed ID: 21555712 [TBL] [Abstract][Full Text] [Related]
52. Basal production of nitric oxide (NO) and non-NO vasodilators in the forearm microcirculation in Type 2 diabetes: associations with blood pressure and HDL cholesterol. Woodman RJ; Playford DA; Watts GF Diabetes Res Clin Pract; 2006 Jan; 71(1):59-67. PubMed ID: 16029909 [TBL] [Abstract][Full Text] [Related]
53. Role of nitric oxide in substance P-induced vasodilation differs between the coronary and forearm circulation in humans. Tagawa T; Mohri M; Tagawa H; Egashira K; Shimokawa H; Kuga T; Hirooka Y; Takeshita A J Cardiovasc Pharmacol; 1997 Apr; 29(4):546-53. PubMed ID: 9156366 [TBL] [Abstract][Full Text] [Related]
54. Role of nitric oxide towards vasodilator effects of substance P and ATP in human forearm vessels. Shiramoto M; Imaizumi T; Hirooka Y; Endo T; Namba T; Oyama J; Hironaga K; Takeshita A Clin Sci (Lond); 1997 Feb; 92(2):123-31. PubMed ID: 9059312 [TBL] [Abstract][Full Text] [Related]
55. Agonist-dependent variablity of contributions of nitric oxide and prostaglandins in human skeletal muscle. Schrage WG; Dietz NM; Eisenach JH; Joyner MJ J Appl Physiol (1985); 2005 Apr; 98(4):1251-7. PubMed ID: 15563630 [TBL] [Abstract][Full Text] [Related]
56. In vivo evidence for nitric oxide-mediated calcium-activated potassium-channel activation during human endotoxemia. Pickkers P; Dorresteijn MJ; Bouw MP; van der Hoeven JG; Smits P Circulation; 2006 Aug; 114(5):414-21. PubMed ID: 16864730 [TBL] [Abstract][Full Text] [Related]
57. ATP-induced vasodilation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins, and adenosine. Mortensen SP; González-Alonso J; Bune LT; Saltin B; Pilegaard H; Hellsten Y Am J Physiol Regul Integr Comp Physiol; 2009 Apr; 296(4):R1140-8. PubMed ID: 19118095 [TBL] [Abstract][Full Text] [Related]
58. NG-monomethyl-L-arginine inhibits the blood flow but not the insulin-like response of forearm muscle to IGF- I: possible role of nitric oxide in muscle protein synthesis. Fryburg DA J Clin Invest; 1996 Mar; 97(5):1319-28. PubMed ID: 8636445 [TBL] [Abstract][Full Text] [Related]
59. NOS inhibition blunts and delays the compensatory dilation in hypoperfused contracting human muscles. Casey DP; Joyner MJ J Appl Physiol (1985); 2009 Dec; 107(6):1685-92. PubMed ID: 19729589 [TBL] [Abstract][Full Text] [Related]
60. Effects of nitric oxide inhibition on basal forearm blood flow in patients with nonischemic chronic heart failure. Yoshida H; Nakamura M; Akatsu T; Arakawa N; Hiramori K Heart Vessels; 1998; 13(3):142-6. PubMed ID: 10328184 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]