These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 8905089)
1. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Howard RJ; Valent B Annu Rev Microbiol; 1996; 50():491-512. PubMed ID: 8905089 [TBL] [Abstract][Full Text] [Related]
2. Biomechanical model for appressorial design in Magnaporthe grisea. Tongen A; Goriely A; Tabor M J Theor Biol; 2006 May; 240(1):1-8. PubMed ID: 16207493 [TBL] [Abstract][Full Text] [Related]
3. Independent genetic mechanisms mediate turgor generation and penetration peg formation during plant infection in the rice blast fungus. Park G; Bruno KS; Staiger CJ; Talbot NJ; Xu JR Mol Microbiol; 2004 Sep; 53(6):1695-707. PubMed ID: 15341648 [TBL] [Abstract][Full Text] [Related]
4. The melanin biosynthesis genes of Alternaria alternata can restore pathogenicity of the melanin-deficient mutants of Magnaporthe grisea. Kawamura C; Moriwaki J; Kimura N; Fujita Y; Fuji S; Hirano T; Koizumi S; Tsuge T Mol Plant Microbe Interact; 1997 May; 10(4):446-53. PubMed ID: 9150594 [TBL] [Abstract][Full Text] [Related]
5. Pathogen-induced production of the antifungal AFP protein from Aspergillus giganteus confers resistance to the blast fungus Magnaporthe grisea in transgenic rice. Moreno AB; Peñas G; Rufat M; Bravo JM; Estopà M; Messeguer J; San Segundo B Mol Plant Microbe Interact; 2005 Sep; 18(9):960-72. PubMed ID: 16167766 [TBL] [Abstract][Full Text] [Related]
6. A six-gene phylogeny reveals the evolution of mode of infection in the rice blast fungus and allied species. Zhang N; Zhao S; Shen Q Mycologia; 2011; 103(6):1267-76. PubMed ID: 21642347 [TBL] [Abstract][Full Text] [Related]
7. Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection. Wang ZY; Soanes DM; Kershaw MJ; Talbot NJ Mol Plant Microbe Interact; 2007 May; 20(5):475-91. PubMed ID: 17506326 [TBL] [Abstract][Full Text] [Related]
9. Saccharomyces cerevisiae SSD1 orthologues are essential for host infection by the ascomycete plant pathogens Colletotrichum lagenarium and Magnaporthe grisea. Tanaka S; Yamada K; Yabumoto K; Fujii S; Huser A; Tsuji G; Koga H; Dohi K; Mori M; Shiraishi T; O'Connell R; Kubo Y Mol Microbiol; 2007 Jun; 64(5):1332-49. PubMed ID: 17542924 [TBL] [Abstract][Full Text] [Related]
10. Mnh6, a nonhistone protein, is required for fungal development and pathogenicity of Magnaporthe grisea. Lu JP; Feng XX; Liu XH; Lu Q; Wang HK; Lin FC Fungal Genet Biol; 2007 Sep; 44(9):819-29. PubMed ID: 17644013 [TBL] [Abstract][Full Text] [Related]
11. Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction. Jiang CJ; Shimono M; Sugano S; Kojima M; Yazawa K; Yoshida R; Inoue H; Hayashi N; Sakakibara H; Takatsuji H Mol Plant Microbe Interact; 2010 Jun; 23(6):791-8. PubMed ID: 20459318 [TBL] [Abstract][Full Text] [Related]
12. Analysis of genes expressed during rice-Magnaporthe grisea interactions. Kim S; Ahn IP; Lee YH Mol Plant Microbe Interact; 2001 Nov; 14(11):1340-6. PubMed ID: 11763134 [TBL] [Abstract][Full Text] [Related]
13. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Veneault-Fourrey C; Barooah M; Egan M; Wakley G; Talbot NJ Science; 2006 Apr; 312(5773):580-3. PubMed ID: 16645096 [TBL] [Abstract][Full Text] [Related]
14. Suppression of plant-generated reactive oxygen species is required for successful infection by the rice blast fungus. Huang K; Czymmek KJ; Caplan JL; Sweigard JA; Donofrio NM Virulence; 2011; 2(6):559-62. PubMed ID: 21971181 [TBL] [Abstract][Full Text] [Related]
15. Biosynthesis of secondary metabolites in the rice blast fungus Magnaporthe grisea: the role of hybrid PKS-NRPS in pathogenicity. Collemare J; Billard A; Böhnert HU; Lebrun MH Mycol Res; 2008 Feb; 112(Pt 2):207-15. PubMed ID: 18272356 [TBL] [Abstract][Full Text] [Related]
16. Detection of Magnaporthe grisea in infested rice seeds using polymerase chain reaction. Chadha S; Gopalakrishna T J Appl Microbiol; 2006 May; 100(5):1147-53. PubMed ID: 16630016 [TBL] [Abstract][Full Text] [Related]
17. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Kim S; Ahn IP; Rho HS; Lee YH Mol Microbiol; 2005 Sep; 57(5):1224-37. PubMed ID: 16101997 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of disease resistance to Magnaporthe grisea in rice by accumulation of hydroxy linoleic acid. Yara A; Yaeno T; Montillet JL; Hasegawa M; Seo S; Kusumi K; Iba K Biochem Biophys Res Commun; 2008 May; 370(2):344-7. PubMed ID: 18373976 [TBL] [Abstract][Full Text] [Related]
19. Peroxisomal carnitine acetyl transferase is required for elaboration of penetration hyphae during plant infection by Magnaporthe grisea. Bhambra GK; Wang ZY; Soanes DM; Wakley GE; Talbot NJ Mol Microbiol; 2006 Jul; 61(1):46-60. PubMed ID: 16824094 [TBL] [Abstract][Full Text] [Related]
20. Penetration of hard substrates by a fungus employing enormous turgor pressures. Howard RJ; Ferrari MA; Roach DH; Money NP Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11281-4. PubMed ID: 1837147 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]