These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

581 related articles for article (PubMed ID: 8905098)

  • 21. Arsenic and cadmium resistance in environmental isolates of Yersinia enterocolitica and Yersinia intermedia.
    Bansal N; Sinha I; Virdi JS
    Can J Microbiol; 2000 May; 46(5):481-4. PubMed ID: 10872084
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Induction of the putative copper ATPases, CopA and CopB, of Enterococcus hirae by Ag+ and Cu2+, and Ag+ extrusion by CopB.
    Odermatt A; Krapf R; Solioz M
    Biochem Biophys Res Commun; 1994 Jul; 202(1):44-8. PubMed ID: 8037745
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacterial resistances to mercury and copper.
    Brown NL; Camakaris J; Lee BT; Williams T; Morby AP; Parkhill J; Rouch DA
    J Cell Biochem; 1991 Jun; 46(2):106-14. PubMed ID: 1717500
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human Menkes X-chromosome disease and the staphylococcal cadmium-resistance ATPase: a remarkable similarity in protein sequences.
    Silver S; Nucifora G; Phung LT
    Mol Microbiol; 1993 Oct; 10(1):7-12. PubMed ID: 7968520
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The structure and function of heavy metal transport P1B-ATPases.
    Argüello JM; Eren E; González-Guerrero M
    Biometals; 2007 Jun; 20(3-4):233-48. PubMed ID: 17219055
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34.
    Scherer J; Nies DH
    Mol Microbiol; 2009 Aug; 73(4):601-21. PubMed ID: 19602147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arsenic resistance in the archaeon "Ferroplasma acidarmanus": new insights into the structure and evolution of the ars genes.
    Gihring TM; Bond PL; Peters SC; Banfield JF
    Extremophiles; 2003 Apr; 7(2):123-30. PubMed ID: 12664264
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase.
    Nucifora G; Chu L; Misra TK; Silver S
    Proc Natl Acad Sci U S A; 1989 May; 86(10):3544-8. PubMed ID: 2524829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmid-mediated heavy metal resistances.
    Silver S; Misra TK
    Annu Rev Microbiol; 1988; 42():717-43. PubMed ID: 3060006
    [No Abstract]   [Full Text] [Related]  

  • 30. Molecular characterization of an anion pump. The ArsB protein is the membrane anchor for the ArsA protein.
    Tisa LS; Rosen BP
    J Biol Chem; 1990 Jan; 265(1):190-4. PubMed ID: 1688427
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [The role of cell wall organization and active efflux pump systems in multidrug resistance of bacteria].
    Hasdemir U
    Mikrobiyol Bul; 2007 Apr; 41(2):309-27. PubMed ID: 17682720
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interplay of the Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans.
    Legatzki A; Grass G; Anton A; Rensing C; Nies DH
    J Bacteriol; 2003 Aug; 185(15):4354-61. PubMed ID: 12867443
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bacterial transformations of and resistances to heavy metals.
    Silver S; Misra TK
    Basic Life Sci; 1984; 28():23-46. PubMed ID: 6367730
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli.
    Nies DH
    J Bacteriol; 1995 May; 177(10):2707-12. PubMed ID: 7751279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes.
    Rosen BP
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Nov; 133(3):689-93. PubMed ID: 12443926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of copper, cadmium, mercury, manganese and lead on Fe2+ and Fe3+ absorption in perfused mouse intestine.
    Iturri S; Nuñez MT
    Digestion; 1998; 59(6):671-5. PubMed ID: 9813392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. First step towards a quantitative model describing Czc-mediated heavy metal resistance in Ralstonia metallidurans.
    Legatzki A; Franke S; Lucke S; Hoffmann T; Anton A; Neumann D; Nies DH
    Biodegradation; 2003 Apr; 14(2):153-68. PubMed ID: 12877469
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arsenic resistance determinants from environmental bacteria.
    Esquivel JA; Meza V; Torres-Guzmán JC; Vargas E; Cervantes C
    Rev Latinoam Microbiol; 1998; 40(1-2):45-52. PubMed ID: 10932734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of efflux in bacterial resistance to soft metals and metalloids.
    Rosen BP
    Essays Biochem; 1999; 34():1-15. PubMed ID: 10730185
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CzcR and CzcD, gene products affecting regulation of resistance to cobalt, zinc, and cadmium (czc system) in Alcaligenes eutrophus.
    Nies DH
    J Bacteriol; 1992 Dec; 174(24):8102-10. PubMed ID: 1459958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.