These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 8905126)

  • 1. The differences shown by C57BL/6 and DBA/2 inbred mice in detecting spatial novelty are subserved by a different hippocampal and parietal cortex interplay.
    Thinus-Blanc C; Save E; Rossi-Arnaud C; Tozzi A; Ammassari-Teule M
    Behav Brain Res; 1996 Oct; 80(1-2):33-40. PubMed ID: 8905126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Posterior parietal cortex lesions severely disrupt spatial learning in DBA mice characterized by a genetic hippocampal dysfunction.
    Ammassari-Teule M; Save E; de Marsanich B; Thinus-Blanc C
    Behav Brain Res; 1998 Sep; 95(1):85-90. PubMed ID: 9754880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial learning following posterior parietal or hippocampal lesions.
    McDaniel WF; Compton DM; Smith SR
    Neuroreport; 1994 Sep; 5(14):1713-7. PubMed ID: 7827314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Object exploration and reactions to spatial and nonspatial changes in hooded rats following damage to parietal cortex or hippocampal formation.
    Save E; Poucet B; Foreman N; Buhot MC
    Behav Neurosci; 1992 Jun; 106(3):447-56. PubMed ID: 1616611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of lesions to the glutamatergic afferents to the nucleus accumbens in the modulation of reactivity to spatial and non-spatial novelty in mice.
    Sargolini F; Roullet P; Oliverio A; Mele A
    Neuroscience; 1999; 93(3):855-67. PubMed ID: 10473251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ibotenic lesions of the nucleus accumbens promote reactivity to spatial novelty in nonreactive DBA mice: implications for neural mechanisms subserving spatial information encoding.
    Roullet P; Mele A; Ammassari-Teule M
    Behav Neurosci; 1997 Oct; 111(5):976-84. PubMed ID: 9383518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical activity enhances spatial learning performance with an associated alteration in hippocampal protein kinase C activity in C57BL/6 and DBA/2 mice.
    Fordyce DE; Wehner JM
    Brain Res; 1993 Aug; 619(1-2):111-9. PubMed ID: 8374769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociating the role of the parietal cortex and dorsal hippocampus for spatial information processing.
    Goodrich-Hunsaker NJ; Hunsaker MR; Kesner RP
    Behav Neurosci; 2005 Oct; 119(5):1307-15. PubMed ID: 16300437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genotype-dependent involvement of limbic areas in spatial learning and postlesion recovery.
    Ammassari-Teule M; Fagioli S; Rossi-Arnaud C
    Physiol Behav; 1992 Sep; 52(3):505-10. PubMed ID: 1409912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sex differences in the behavioral response to spatial and object novelty in adult C57BL/6 mice.
    Frick KM; Gresack JE
    Behav Neurosci; 2003 Dec; 117(6):1283-91. PubMed ID: 14674847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial learning in two inbred strains of mice: genotype-dependent effect of amygdaloid and hippocampal lesions.
    Rossi-Arnaud C; Fagioli S; Ammassari-Teule M
    Behav Brain Res; 1991 Oct; 45(1):9-16. PubMed ID: 1764209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novelty responses to relational and non-relational information in the hippocampus and the parahippocampal region: a comparison based on event-related fMRI.
    Köhler S; Danckert S; Gati JS; Menon RS
    Hippocampus; 2005; 15(6):763-74. PubMed ID: 15999342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual discrimination in inbred mice: strain-specific involvement of hippocampal regions.
    Passino E; Ammassari-Teule M
    Physiol Behav; 1999 Sep; 67(3):393-9. PubMed ID: 10497958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A genotype-dependent hippocampal dynorphinergic mechanism controls mouse exploration.
    Van Daal JH; De Kok YJ; Jenks BG; Wendelaar Bonga SE; Van Abeelen JH
    Pharmacol Biochem Behav; 1987 Dec; 28(4):465-8. PubMed ID: 2893387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential expression and regulation of myristoylated alanine-rich C kinase substrate (MARCKS) in the hippocampus of C57/BL6J and DBA/2J mice.
    McNamara RK; Vasquez PA; Mathe AA; Lenox RH
    J Neurochem; 2003 Apr; 85(2):462-8. PubMed ID: 12675922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial memory, habituation, and reactions to spatial and nonspatial changes in rats with selective lesions of the hippocampus, the entorhinal cortex or the subiculum.
    Galani R; Weiss I; Cassel JC; Kelche C
    Behav Brain Res; 1998 Nov; 96(1-2):1-12. PubMed ID: 9821539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incidental (unreinforced) and reinforced spatial learning in rats with ventral and dorsal lesions of the hippocampus.
    Gaskin S; Gamliel A; Tardif M; Cole E; Mumby DG
    Behav Brain Res; 2009 Aug; 202(1):64-70. PubMed ID: 19447282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of parietal cortex lesions on spatial problem solving in the rat.
    Thinus-Blanc C; Save E; Poucet B; Foreman N
    Behav Brain Res; 1996 Nov; 81(1-2):115-21. PubMed ID: 8950007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of parietal cortex and hippocampus in representing spatial information.
    Kesner RP; Farnsworth G; Kametani H
    Cereb Cortex; 1991; 1(5):367-73. PubMed ID: 1822746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fear conditioning in C57/BL/6 and DBA/2 mice: variability in nucleus accumbens function according to the strain predisposition to show contextual- or cue-based responding.
    Ammassari-Teule M; Passino E; Restivo L; de Marsanich B
    Eur J Neurosci; 2000 Dec; 12(12):4467-74. PubMed ID: 11122357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.