BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 8905146)

  • 1. The effects of different types of pre-training on the rat's retention performance in a swim-to-platform task following administration of scopolamine.
    Caldji C; Vanderwolf CH
    Behav Brain Res; 1996 Oct; 80(1-2):217-20. PubMed ID: 8905146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rats show unimpaired learning within minutes after recovery from single bolus propofol anesthesia.
    Engeland CG; Vanderwolf CH; Gelb AW
    Can J Anaesth; 1999 Jun; 46(6):586-92. PubMed ID: 10391609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intra-amygdala infusions of scopolamine impair performance on a conditioned place preference task but not a spatial radial maze task.
    McIntyre CK; Ragozzino ME; Gold PE
    Behav Brain Res; 1998 Oct; 95(2):219-26. PubMed ID: 9806441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociation of cholinergic function in spatial and procedural learning in rats.
    von Linstow Roloff E; Harbaran D; Micheau J; Platt B; Riedel G
    Neuroscience; 2007 May; 146(3):875-89. PubMed ID: 17418958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of cyclazocine and scopolamine on swim-to-platform performance in rats.
    Buckton G; Zibrowski EM; Vanderwolf CH
    Brain Res; 2001 Dec; 922(2):229-33. PubMed ID: 11743954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The scopolamine-reversal paradigm in rats and monkeys: the importance of computer-assisted operant-conditioning memory tasks for screening drug candidates.
    Buccafusco JJ; Terry AV; Webster SJ; Martin D; Hohnadel EJ; Bouchard KA; Warner SE
    Psychopharmacology (Berl); 2008 Aug; 199(3):481-94. PubMed ID: 17657478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation and scopolamine-reversal of latent learning in the water maze utilizing a revised direct platform placement procedure.
    Malin DH; Schaar KL; Izygon JJ; Nghiem DM; Jabitta SY; Henceroth MM; Chang YH; Daggett JM; Ward CP
    Pharmacol Biochem Behav; 2015 Aug; 135():90-6. PubMed ID: 26033423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The GABA(B) receptor antagonist CGP36742 attenuates the baclofen- and scopolamine-induced deficit in Morris water maze task in rats.
    Nakagawa Y; Takashima T
    Brain Res; 1997 Aug; 766(1-2):101-6. PubMed ID: 9359592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of muscarinic receptor blockade in prelimbic cortex on acquisition and memory formation of an odor-reward task.
    Carballo-Márquez A; Vale-Martínez A; Guillazo-Blanch G; Torras-Garcia M; Boix-Trelis N; Martí-Nicolovius M
    Learn Mem; 2007 Sep; 14(9):616-24. PubMed ID: 17848501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlordiazepoxide interactions with scopolamine and dizocilpine: novel cooperative and antagonistic effects on spatial learning.
    Padlubnaya D; Galizio M; Pitts RC; Keith JR
    Behav Neurosci; 2005 Oct; 119(5):1331-8. PubMed ID: 16300439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of St-587 and prazosin on water maze and passive avoidance performance of scopolamine-treated rats.
    Puumala T; Sirviö J; Ruotsalainen S; Riekkinen P
    Pharmacol Biochem Behav; 1996 Sep; 55(1):107-15. PubMed ID: 8870045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estrogen replacement attenuates effects of scopolamine and lorazepam on memory acquisition and retention.
    Gibbs RB; Burke AM; Johnson DA
    Horm Behav; 1998 Oct; 34(2):112-25. PubMed ID: 9799622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interaction of L-deprenyl and scopolamine on spatial learning/memory in rats.
    Yavich L; Sirviö J; Heinonen E; Riekkinen P
    J Neural Transm Park Dis Dement Sect; 1993; 6(3):189-97. PubMed ID: 8123192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment with a muscarinic acetylcholine receptor antagonist impairs the acquisition of conditioned reward learning in rats.
    Nisanov R; Galaj E; Ranaldi R
    Neurosci Lett; 2016 Feb; 614():95-8. PubMed ID: 26768226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholinergic agents and delay-dependent performance in the rat.
    Buxton A; Callan OA; Blatt EJ; Wong EH; Fontana DJ
    Pharmacol Biochem Behav; 1994 Dec; 49(4):1067-73. PubMed ID: 7886077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholinergic effects on spatial exploration and its memory.
    Kelly PH; Malanowski J
    Can J Physiol Pharmacol; 1993; 71(5-6):352-64. PubMed ID: 8402401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that mnesic states govern normal and disordered memory.
    Colpaert FC; Koek W; Bruins Slot LA
    Behav Pharmacol; 2001 Dec; 12(8):575-89. PubMed ID: 11856895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testosterone potentiates scopolamine-induced disruptions of nonspatial learning in gonadectomized male rats.
    Leonard ST; Moerschbaecher JM; Winsauer PJ
    Exp Clin Psychopharmacol; 2007 Feb; 15(1):48-57. PubMed ID: 17295584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the effects of diazepam and scopolamine in two positively reinforced learning tasks.
    File SE; Mabbutt PS; Toth E
    Pharmacol Biochem Behav; 1990 Dec; 37(4):587-92. PubMed ID: 2093163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scopolamine blocks the effects of swim stress on memory retrieval in rats.
    Kumar KB; Karanth KS
    J Neural Transm (Vienna); 1996; 103(11):1331-6. PubMed ID: 9013419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.