These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
64 related articles for article (PubMed ID: 8905167)
21. Short-term and complete reversal of NGF effects in rats with lesions of the nucleus basalis magnocellularis. Winkler J; Power AE; Ramirez GA; Thal LJ Brain Res; 1998 Mar; 788(1-2):1-12. PubMed ID: 9554932 [TBL] [Abstract][Full Text] [Related]
22. Effects of bilateral ibotenate-induced lesions of the nucleus basalis magnocellularis upon selective cholinergic biochemical markers in the rat anterior cerebral cortex. Watson M; Vickroy TW; Fibiger HC; Roeske WR; Yamamura HI Brain Res; 1985 Nov; 346(2):387-91. PubMed ID: 3840399 [TBL] [Abstract][Full Text] [Related]
23. Interaction between raphe dorsalis and nucleus basalis magnocellularis in the regulation of high-voltage spindle activity in rat neocortex. Riekkinen P; Sirviö J; Miettinen R; Riekkinen P Brain Res; 1990 Aug; 526(1):31-6. PubMed ID: 2078816 [TBL] [Abstract][Full Text] [Related]
24. Muscarinic cholinoceptor subtypes in the rat frontoparietal cortex after ipsilateral lesions of the nucleus basalis magnocellularis. Bronzetti E; Caporali MG; Felici L; Niglio T; Scotti de Carolis A; Amenta F Pharmacology; 1993 Jun; 46(6):301-7. PubMed ID: 8516379 [TBL] [Abstract][Full Text] [Related]
25. Sensitivity of rat frontal cortical neurones to nicotine is increased by chronic administration of nicotine and by lesions of the nucleus basalis magnocellularis: comparison with numbers of [3H]nicotine binding sites. Abdulla FA; Calaminici M; Wonnacott S; Gray JA; Sinden JD; Stephenson JD Synapse; 1995 Dec; 21(4):281-8. PubMed ID: 8869158 [TBL] [Abstract][Full Text] [Related]
26. Nucleus basalis magnocellularis lesions: lack of biochemical and immunocytochemical recovery and effect of cholinesterase inhibitors on passive avoidance. Thal LJ; Dokla CP; Armstrong DM Behav Neurosci; 1988 Dec; 102(6):852-60. PubMed ID: 3214535 [TBL] [Abstract][Full Text] [Related]
27. A study of cortical and hippocampal NMDA and PCP receptors following selective cortical and subcortical lesions. Maragos WF; Greenamyre JT; Chu DC; Penney JB; Young AB Brain Res; 1991 Jan; 538(1):36-45. PubMed ID: 1850317 [TBL] [Abstract][Full Text] [Related]
28. Effect of the thyrotropin releasing hormone analogue posatirelin (RGH 2202) on microanatomical changes induced by lesions of the nucleus basalis magnocellularis in the rat. Panocka I; Coppi G; Maggioni A; Olgiati V; Sabbatini M; Amenta F Drugs Exp Clin Res; 1997; 23(1):13-23. PubMed ID: 9093818 [TBL] [Abstract][Full Text] [Related]
29. Differential modulation of the cholinergic phenotype of the nucleus basalis magnocellularis neurons by applying NGF at the cell body or cortical terminal fields. Hu L; Côté SL; Cuello AC Exp Neurol; 1997 Jan; 143(1):162-71. PubMed ID: 9000455 [TBL] [Abstract][Full Text] [Related]
30. Differential effects of nucleus basalis lesions in young adult and aging rats. Wellman CL; Pelleymounter MA Neurobiol Aging; 1999; 20(4):381-93. PubMed ID: 10604431 [TBL] [Abstract][Full Text] [Related]
31. Effects of nerve growth factor treatment on rats with lesions of the nucleus basalis magnocellularis produced by ibotenic acid, quisqualic acid, and AMPA. Winkler J; Thal LJ Exp Neurol; 1995 Dec; 136(2):234-50. PubMed ID: 7498413 [TBL] [Abstract][Full Text] [Related]
32. Autoradiographic evidence for flow-metabolism uncoupling during stimulation of the nucleus basalis of Meynert in the conscious rat. Vaucher E; Borredon J; Bonvento G; Seylaz J; Lacombe P J Cereb Blood Flow Metab; 1997 Jun; 17(6):686-94. PubMed ID: 9236725 [TBL] [Abstract][Full Text] [Related]
33. Autoradiographic distribution of cerebral blood flow increases elicited by stimulation of the nucleus basalis magnocellularis in the unanesthetized rat. Vaucher E; Borredon J; Seylaz J; Lacombe P Brain Res; 1995 Sep; 691(1-2):57-68. PubMed ID: 8590065 [TBL] [Abstract][Full Text] [Related]
34. Stimulation of the nucleus basalis of Meynert and substantia innominata produces widespread increases in cerebral blood flow in the frontal, parietal and occipital cortices. Adachi T; Biesold D; Inanami O; Sato A Brain Res; 1990 Apr; 514(1):163-6. PubMed ID: 2357523 [TBL] [Abstract][Full Text] [Related]
35. Quantitative brain autoradiography of [9,10-3H]palmitic acid incorporation into brain lipids. Noronha JG; Bell JM; Rapoport SI J Neurosci Res; 1990 Jun; 26(2):196-208. PubMed ID: 2366262 [TBL] [Abstract][Full Text] [Related]
36. Differential alterations of second messenger systems and cerebral glucose use following excitotoxic lesion of rat cerebral cortex. Horsburgh K; McCulloch J Brain Res; 1991 Nov; 563(1-2):306-10. PubMed ID: 1723923 [TBL] [Abstract][Full Text] [Related]
37. In vivo imaging of brain incorporation of fatty acids and of 2-deoxy-D-glucose demonstrates functional and structural neuroplastic effects of chronic unilateral visual deprivation in rats. Wakabayashi S; Freed LM; Chang M; Rapoport SI Brain Res; 1995 May; 679(1):110-22. PubMed ID: 7648253 [TBL] [Abstract][Full Text] [Related]
38. Effect of Nucleus Basalis Magnocellularis Ablation on Local Brain Glucose Utilization in the Rat: Functional Brain Reorganization. Soncrant TT; Holloway HW; Horwitz B; Rapoport SI; Lamour YA Eur J Neurosci; 1992; 4(7):653-662. PubMed ID: 12106329 [TBL] [Abstract][Full Text] [Related]
39. Effect of vagal autotransplantation on quantitative [3H]-vesamicol binding image in rats with unilateral lesions of nucleus baslis magnocellularis. Ikeda E; Ichikawa A; Mori H; Shiba K; Kuji I; Sumiya H; Tonami N; Ikeda K Neurosci Lett; 2001 Mar; 300(1):33-6. PubMed ID: 11172933 [TBL] [Abstract][Full Text] [Related]
40. Evidence for the existence of serotonin type-2 receptors on cholinergic terminals in rat cortex. Quirion R; Richard J; Dam TV Brain Res; 1985 May; 333(2):345-9. PubMed ID: 3995301 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]