BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 8905264)

  • 21. The use of coated and uncoated capillaries for the electrophoretic separation of DNA in dilute polymer solutions.
    Barron AE; Sunada WM; Blanch HW
    Electrophoresis; 1995 Jan; 16(1):64-74. PubMed ID: 7737093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA sequencing with hydrophilic and hydrophobic polymers at elevated column temperatures.
    He H; Buchholz BA; Kotler L; Miller AW; Barron AE; Karger BL
    Electrophoresis; 2002 May; 23(10):1421-8. PubMed ID: 12116152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA trapping electrophoresis.
    Ulanovsky L; Drouin G; Gilbert W
    Nature; 1990 Jan; 343(6254):190-2. PubMed ID: 2296311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anomalously fast migration of triplet-repeat DNA in capillary electrophoresis with linear polymer solution.
    Kiba Y; Zhang L; Baba Y
    Electrophoresis; 2003 Jan; 24(3):452-7. PubMed ID: 12569536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exact behaviour of single-stranded DNA electrophoretic mobilities in polyacrylamide gels.
    Mayer P; Slater GW; Drouin G
    Appl Theor Electrophor; 1993; 3(3-4):147-55. PubMed ID: 8512945
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parallelism between width and asymmetry of peaks of rigid, spherical particles in capillary zone electrophoresis using polymer solutions.
    Radko SP; Chrambach A
    Electrophoresis; 1998 Jul; 19(10):1620-4. PubMed ID: 9719536
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Do DNA gel electrophoretic mobilities extrapolate to the free-solution mobility of DNA at zero gel concentration?
    Strutz K; Stellwagen NC
    Electrophoresis; 1998 May; 19(5):635-42. PubMed ID: 9629889
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The use of elevated column temperature to extend DNA sequencing read lengths in capillary electrophoresis with replaceable polymer matrices.
    Klepárnik K; Foret F; Berka J; Goetzinger W; Miller AW; Karger BL
    Electrophoresis; 1996 Dec; 17(12):1860-6. PubMed ID: 9034767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of operating variables on the separation of DNA molecules by capillary polyacrylamide gel electrophoresis.
    Guttman A
    Appl Theor Electrophor; 1992; 3(2):91-6. PubMed ID: 1362081
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gel electrophoresis of DNA fragments in narrow-bore capillaries.
    Lindberg P; Stjernström M; Roeraade J
    Electrophoresis; 1997 Oct; 18(11):1973-9. PubMed ID: 9420155
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-speed DNA sequencing by tube-based capillary electrophoresis.
    Sakai T; Sonehara T; Goda C; Kohara Y; Anazawa T
    Electrophoresis; 2004 Oct; 25(20):3378-86. PubMed ID: 15490443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast detection of a (CA)18 microsatellite repeat in the IgE receptor gene by capillary electrophoresis with laser-induced fluorescence detection.
    Klepárník K; Malá Z; Havác Z; Blazková M; Hollá L; Bocek P
    Electrophoresis; 1998 Feb; 19(2):249-55. PubMed ID: 9548287
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling ssDNA electrophoretic migration with band broadening in an entangled or cross-linked network.
    Chen Z; Graham R; Burns MA; Larson RG
    Electrophoresis; 2007 Aug; 28(16):2783-800. PubMed ID: 17702058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA electrophoresis in agarose gels: effects of field and gel concentration on the exponential dependence of reciprocal mobility on DNA length.
    Rill RL; Beheshti A; Van Winkle DH
    Electrophoresis; 2002 Aug; 23(16):2710-9. PubMed ID: 12210176
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of RNA by capillary electrophoresis.
    Skeidsvoll J; Ueland PM
    Electrophoresis; 1996 Sep; 17(9):1512-7. PubMed ID: 8905269
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of electric field strength for DNA sequencing in capillary gel electrophoresis.
    Luckey JA; Smith LM
    Anal Chem; 1993 Oct; 65(20):2841-50. PubMed ID: 8250264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Capillary and microelectrophoretic separations of ligase detection reaction products produced from low-abundant point mutations in genomic DNA.
    Thomas G; Sinville R; Sutton S; Farquar H; Hammer RP; Soper SA; Cheng YW; Barany F
    Electrophoresis; 2004 Jun; 25(10-11):1668-77. PubMed ID: 15188256
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activation energy of single-stranded DNA moving through cross-linked polyacrylamide gels at 300 V/cm. Effect of temperature on sequencing rate in high-electric-field capillary gel electrophoresis.
    Lu H; Arriaga E; Chen DY; Figeys D; Dovichi NJ
    J Chromatogr A; 1994 Oct; 680(2):503-10. PubMed ID: 7981831
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimation of polyacrylamide gel pore size from Ferguson plots of linear DNA fragments. II. Comparison of gels with different crosslinker concentrations, added agarose and added linear polyacrylamide.
    Holmes DL; Stellwagen NC
    Electrophoresis; 1991 Sep; 12(9):612-9. PubMed ID: 1752240
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamics of single-stranded DNA migration in denaturing polyacrylamide slab-gel electrophoresis.
    Djouadi Z; Bottani S; Duval MA; Siebert R; Tricoire H; Valentin L
    Electrophoresis; 2001 Oct; 22(16):3527-32. PubMed ID: 11669537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.