These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 890568)

  • 21. Effects of shearing on chromatin structure.
    Maciewicz RA; Li HJ
    Biochemistry; 1978 Mar; 17(6):962-7. PubMed ID: 629954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polylysine binding to histone-bound regions in chromatin.
    Li HJ; Chang C
    Biochem Biophys Res Commun; 1972 May; 47(4):883-7. PubMed ID: 5063597
    [No Abstract]   [Full Text] [Related]  

  • 23. Characterization of chromatin modified with ethyl acetimidate.
    Tack LO; Simpson RT
    Biochemistry; 1977 Aug; 16(17):3746-53. PubMed ID: 901749
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The distribution of high-mobility-group proteins in chromatin fractions produced by nuclease digestion of pig thymus nuclei.
    Plumb MA; MacGillivray AJ
    Biochem Soc Trans; 1981 Feb; 9(1):143-4. PubMed ID: 6260547
    [No Abstract]   [Full Text] [Related]  

  • 25. Sequence specific interaction of the chromosomal proteins with DNA.
    Tuan D; Chetsanga C; Doty PM
    Nucleic Acids Res; 1977 Oct; 4(10):3415-39. PubMed ID: 337237
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation and characterization of a spacerless dinucleosome from H1-deleted chromatin.
    Klevan L; Crothers DM
    Nucleic Acids Res; 1977 Dec; 4(12):4077-89. PubMed ID: 600791
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of histone f2al fragments with deoxyribonucleic acid. Circular dichroism and thermal denaturation studies.
    Adler AJ; Fulmer AW; Fasman GD
    Biochemistry; 1975 Apr; 14(7):1445-54. PubMed ID: 1168487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of salt concentration and H-1 depletion on the digestion of calf thymus chromatin by micrococcal nuclease.
    Weischet WO; Allen JR; Riedel G; Van Holde KE
    Nucleic Acids Res; 1979; 6(5):1843-62. PubMed ID: 450715
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of chromatin reconstitutiion.
    Fulmer AW; Fasman GD
    Biochemistry; 1979 Feb; 18(4):659-68. PubMed ID: 420808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamics of condensation of nuclear chromatin. A differential scanning calorimetry study of the salt-dependent structural transitions.
    Cavazza B; Brizzolara G; Lazzarini G; Patrone E; Piccardo M; Barboro P; Parodi S; Pasini A; Balbi C
    Biochemistry; 1991 Sep; 30(37):9060-72. PubMed ID: 1892819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterogeneity of chromatin fragments produced by micrococcal nuclease action.
    Rill RL; Oosterhof DK; Hozier JC; Nelson DA
    Nucleic Acids Res; 1975 Sep; 2(9):1525-38. PubMed ID: 1178527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural organization of calf thymus chromatin depleted of histone H1 by acidic treatment.
    Azorin F; Junca R
    FEBS Lett; 1981 Oct; 133(1):67-71. PubMed ID: 7308476
    [No Abstract]   [Full Text] [Related]  

  • 33. A contribution of nonhistone proteins to the conformation of chromatin.
    Tashiro T; Kurokawa M
    Eur J Biochem; 1975 Dec; 60(2):569-77. PubMed ID: 1204656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Core nucleosomes by digestion of reconstructed histone-DNA complexes.
    Bryan PN; Wright EB; Olins DE
    Nucleic Acids Res; 1979 Apr; 6(4):1449-65. PubMed ID: 450703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Irreversible changes occur in chromatin structure upon dissociation of histone H1.
    Hacques MF; Marion C
    J Biomol Struct Dyn; 1990 Oct; 8(2):439-58. PubMed ID: 2268409
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of non-histone proteins on thermal transition of chromatin and of DNA.
    Defer N; Kitzis A; Kruh J; Brahms S; Brahms J
    Nucleic Acids Res; 1977 Jul; 4(7):2293-306. PubMed ID: 909776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The organization of histones and DNA in chromatin: evidence for an arginine-rich histone kernel.
    Camerini-Otero RD; Sollner-Webb B; Felsenfeld G
    Cell; 1976 Jul; 8(3):333-47. PubMed ID: 986252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mixed conformations of deoxyribonucleic acid in chromatin: a preliminary report.
    Hanlon S; Johnson RS; Wolf B; Chan A
    Proc Natl Acad Sci U S A; 1972 Nov; 69(11):3263-7. PubMed ID: 4343960
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of trypsin on nuclease-resistant chromatin fragments.
    Sahasrabuddhe CG; Van Holde KE
    J Biol Chem; 1974 Jan; 249(1):152-6. PubMed ID: 4855624
    [No Abstract]   [Full Text] [Related]  

  • 40. Linker DNA destabilizes condensed chromatin.
    Green GR; Ferlita RR; Walkenhorst WF; Poccia DL
    Biochem Cell Biol; 2001; 79(3):349-63. PubMed ID: 11467748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.