These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
679 related articles for article (PubMed ID: 8905930)
1. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis. Gerós H; Cássio F; Leão C Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of glucose and maltose transport in plasma-membrane vesicles from the yeast Candida utilis. van den Broek PJ; van Gompel AE; Luttik MA; Pronk JT; van Leeuwen CC Biochem J; 1997 Jan; 321 ( Pt 2)(Pt 2):487-95. PubMed ID: 9020885 [TBL] [Abstract][Full Text] [Related]
3. Functional purification of the monocarboxylate transporter of the yeast Candida utilis. Baltazar F; Cássio F; Leão C Biotechnol Lett; 2006 Aug; 28(16):1221-6. PubMed ID: 16802097 [TBL] [Abstract][Full Text] [Related]
4. Proton-motive force-driven D-galactose transport in plasma membrane vesicles from the yeast Kluyveromyces marxianus. Van Leeuwen CC; Postma E; Van den Broek PJ; Van Steveninck J J Biol Chem; 1991 Jul; 266(19):12146-51. PubMed ID: 1648083 [TBL] [Abstract][Full Text] [Related]
5. Energized transport of potassium ions in the absence of valinomycin by cytochrome c oxidase-reconstituted vesicles. Singh AP; Nicholls P Biochim Biophys Acta; 1984 Nov; 777(2):194-200. PubMed ID: 6091755 [TBL] [Abstract][Full Text] [Related]
6. Evidence for proton countertransport by the sarcoplasmic reticulum Ca2(+)-ATPase during calcium transport in reconstituted proteoliposomes with low ionic permeability. Levy D; Seigneuret M; Bluzat A; Rigaud JL J Biol Chem; 1990 Nov; 265(32):19524-34. PubMed ID: 2174042 [TBL] [Abstract][Full Text] [Related]
7. Mechanism and energetics of dipeptide transport in membrane vesicles of Lactococcus lactis. Smid EJ; Driessen AJ; Konings WN J Bacteriol; 1989 Jan; 171(1):292-8. PubMed ID: 2492499 [TBL] [Abstract][Full Text] [Related]
8. Utilization of short-chain monocarboxylic acids by the yeast Torulaspora delbrueckii: specificity of the transport systems and their regulation. Casal M; Leão C Biochim Biophys Acta; 1995 Jun; 1267(2-3):122-30. PubMed ID: 7612664 [TBL] [Abstract][Full Text] [Related]
9. Evidence for tripeptide-proton symport in renal brush border membrane vesicles. Studies in a novel rat strain with a genetic absence of dipeptidyl peptidase IV. Tiruppathi C; Ganapathy V; Leibach FH J Biol Chem; 1990 Feb; 265(4):2048-53. PubMed ID: 1967607 [TBL] [Abstract][Full Text] [Related]
10. Active auxin uptake by zucchini membrane vesicles: quantitation using ESR volume and delta pH determinations. Lomax TL; Mehlhorn RJ; Briggs WR Proc Natl Acad Sci U S A; 1985 Oct; 82(19):6541-5. PubMed ID: 2995970 [TBL] [Abstract][Full Text] [Related]
11. Role of the electrochemical proton gradient in genetic transformation of Haemophilus influenzae. Bremer W; Kooistra J; Hellingwerf KJ; Konings WN J Bacteriol; 1984 Mar; 157(3):868-73. PubMed ID: 6321440 [TBL] [Abstract][Full Text] [Related]
12. L-[U-14C] lactate binding to a 43 kDa protein in plasma membranes of Candida utilis. Gerós H; Baltazar F; Cássio F; Leão CL Microbiology (Reading); 2000 Mar; 146 ( Pt 3)():695-699. PubMed ID: 10746773 [TBL] [Abstract][Full Text] [Related]
13. Maltose/proton co-transport in Saccharomyces cerevisiae. Comparative study with cells and plasma membrane vesicles. Van Leeuwen CC; Weusthuis RA; Postma E; Van den Broek PJ; Van Dijken JP Biochem J; 1992 Jun; 284 ( Pt 2)(Pt 2):441-5. PubMed ID: 1318030 [TBL] [Abstract][Full Text] [Related]
14. Uniport of monoanionic L-malate in membrane vesicles from Leuconostoc oenos. Salema M; Poolman B; Lolkema JS; Dias MC; Konings WN Eur J Biochem; 1994 Oct; 225(1):289-95. PubMed ID: 7925448 [TBL] [Abstract][Full Text] [Related]
15. Role of proton motive force in genetic transformation of Bacillus subtilis. van Nieuwenhoven MH; Hellingwerf KJ; Venema G; Konings WN J Bacteriol; 1982 Aug; 151(2):771-6. PubMed ID: 6284711 [TBL] [Abstract][Full Text] [Related]
16. A proton gradient is the driving force for uphill transport of lactate in human placental brush-border membrane vesicles. Balkovetz DF; Leibach FH; Mahesh VB; Ganapathy V J Biol Chem; 1988 Sep; 263(27):13823-30. PubMed ID: 2843538 [TBL] [Abstract][Full Text] [Related]
17. The putative electrogenic nitrate-proton symport of the yeast Candida utilis. Comparison with the systems absorbing glucose or lactate. Eddy AA; Hopkins PG Biochem J; 1985 Oct; 231(2):291-7. PubMed ID: 2998345 [TBL] [Abstract][Full Text] [Related]
18. The proteoliposomal steady state. Effect of size, capacitance and membrane permeability on cytochrome-oxidase-induced ion gradients. Wrigglesworth JM; Cooper CE; Sharpe MA; Nicholls P Biochem J; 1990 Aug; 270(1):109-18. PubMed ID: 2168698 [TBL] [Abstract][Full Text] [Related]
19. Reconstitution of ATP-dependent calcium transport from streptococci. Ambudkar SV; Lynn AR; Maloney PC; Rosen BP J Biol Chem; 1986 Nov; 261(33):15596-600. PubMed ID: 3096992 [TBL] [Abstract][Full Text] [Related]
20. Role of a transmembrane pH gradient in epinephrine transport by chromaffin granule membrane vesicles. Schuldiner S; Fishkes H; Kanner BI Proc Natl Acad Sci U S A; 1978 Aug; 75(8):3713-6. PubMed ID: 29292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]