These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8906240)

  • 41. The lesion of serotonergic neurons does not prevent antidepressant-induced reversal of escape failures produced by inescapable shocks in rats.
    Soubrie P; Martin P; el Mestikawy S; Thiebot MH; Simon P; Hamon M
    Pharmacol Biochem Behav; 1986 Jul; 25(1):1-6. PubMed ID: 3749215
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Citalopram's ability to increase the extracellular concentrations of serotonin in the dorsal raphe prevents the drug's effect in the frontal cortex.
    Invernizzi R; Belli S; Samanin R
    Brain Res; 1992 Jul; 584(1-2):322-4. PubMed ID: 1515949
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of certain psychopharmaca on intraneuronal levels of 5-HT and catecholamines in the specific monoamine neurons of the rat brain.
    Bartonicék V; Dahlström A; Fuxe K
    Experientia; 1964 Dec; 20(12):690-1. PubMed ID: 5858602
    [No Abstract]   [Full Text] [Related]  

  • 44. The influence of quipazine on the turnover rate of serotonin.
    Grabowska M; Antkiewicz L; Michaluk J
    Biochem Pharmacol; 1974 Nov; 23(22):3211-2. PubMed ID: 4441411
    [No Abstract]   [Full Text] [Related]  

  • 45. Effect of co-administration of subchronic lithium pretreatment and acute MAO inhibitors on extracellular monoamine levels and the expression of contextual conditioned fear in rats.
    Kitaichi Y; Inoue T; Nakagawa S; Izumi T; Koyama T
    Eur J Pharmacol; 2006 Feb; 532(3):236-45. PubMed ID: 16487506
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inhibition of phenylethylamine metabolism in vivo-Effect of antidepressants.
    Von Voigtlander PF; Losey EG
    Biochem Pharmacol; 1976 Jan; 25(2):217-8. PubMed ID: 1259787
    [No Abstract]   [Full Text] [Related]  

  • 47. Evidence for dopamine deamination by both type A and type B monoamine oxidase in rat brain in vivo and for the degree of inhibition of enzyme necessary for increased functional activity of dopamine and 5-hydroxytryptamine.
    Green AR; Mitchell BD; Tordoff AF; Youdim MB
    Br J Pharmacol; 1977 Jul; 60(3):343-9. PubMed ID: 890205
    [No Abstract]   [Full Text] [Related]  

  • 48. Increased tonic activation of rat forebrain 5-HT(1A) receptors by lithium addition to antidepressant treatments.
    Haddjeri N; Szabo ST; de Montigny C; Blier P
    Neuropsychopharmacology; 2000 Apr; 22(4):346-56. PubMed ID: 10700654
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The action of antidepressants on the uptake of 5-HT by platelets; a comparison with other tests for antidepressant activity.
    Cockrill S; Somerville AR; Whittle BA
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1968; 259(2):159. PubMed ID: 4232654
    [No Abstract]   [Full Text] [Related]  

  • 50. Inhibition of monoamine oxidase activity by antidepressants and mood stabilizers.
    Fisar Z; Hroudová J; Raboch J
    Neuro Endocrinol Lett; 2010; 31(5):645-56. PubMed ID: 21200377
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Altered depression-related behavior and neurochemical changes in serotonergic neurons in mutant R406W human tau transgenic mice.
    Egashira N; Iwasaki K; Takashima A; Watanabe T; Kawabe H; Matsuda T; Mishima K; Chidori S; Nishimura R; Fujiwara M
    Brain Res; 2005 Oct; 1059(1):7-12. PubMed ID: 16182262
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of diphenylhydantoin on brain 5-hydroxytryptamine metabolism and function.
    Green AR; Grahame-Smith DG
    Neuropharmacology; 1975 Feb; 14(2):107-13. PubMed ID: 1153078
    [No Abstract]   [Full Text] [Related]  

  • 53. Modification of the N-methyl-D-aspartate response by antidepressant sigma receptor ligands.
    Bergeron R; Debonnel G; De Montigny C
    Eur J Pharmacol; 1993 Aug; 240(2-3):319-23. PubMed ID: 8243549
    [TBL] [Abstract][Full Text] [Related]  

  • 54. How important is the synthesis of brain 5-hydroxytryptamine in the physiological control of its central function?
    Grahame-Smith DG
    Adv Biochem Psychopharmacol; 1974; 10():83-91. PubMed ID: 4367772
    [No Abstract]   [Full Text] [Related]  

  • 55. Inhibition of lung, liver and brain monoamine oxidase by imipramine and desipramine.
    Roth JA; Gillis CN
    Biochem Pharmacol; 1974 Mar; 23(6):1138-40. PubMed ID: 4824911
    [No Abstract]   [Full Text] [Related]  

  • 56. Interaction of selective inhibitors of monoamine oxidase with pethidine in rabbits.
    Jounela AJ; Mattila MJ; Knoll J
    Biochem Pharmacol; 1977 Apr; 26(8):806-8. PubMed ID: 856214
    [No Abstract]   [Full Text] [Related]  

  • 57. The effect of morphine on the content of serotonin, 5-hydroxyindole acetic acid and substance-P in the nuclei raphe magnus and reticularis gigantocellularis.
    Lakoski JM; Mohrland JS; Gebhart GF
    Life Sci; 1980 Dec 22-29; 27(25-26):2639-44. PubMed ID: 6163939
    [No Abstract]   [Full Text] [Related]  

  • 58. Serotonin metabolism and release in frontal cortex of rats on a vitamin E-deficient diet.
    Heslop KE; Goss-Sampson MA; Muller DP; Curzon G
    J Neurochem; 1996 Feb; 66(2):860-4. PubMed ID: 8592162
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of thalamic lesion on the bilateral regulation of serotoninergic transmission in rat basal ganglia.
    Becquet D; Faudon M; Hery F
    J Neural Transm; 1988; 74(2):117-28. PubMed ID: 2466948
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Methylaplysinopsin: a natural product of marine origin with effects on serotonergic neurotransmission.
    Baird-Lambert J; Davis PA; Taylor KM
    Clin Exp Pharmacol Physiol; 1982; 9(2):203-12. PubMed ID: 6290119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.