BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8906283)

  • 1. Neuroprotective effects of melatonin.
    Lipartiti M; Franceschini D; Zanoni R; Gusella M; Giusti P; Cagnoli CM; Kharlamov A; Manev H
    Adv Exp Med Biol; 1996; 398():315-21. PubMed ID: 8906283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Further evidences for neuroprotective effects of melatonin.
    Franceschini D; Skaper SD; Floreani M; Borin G; Giusti P
    Adv Exp Med Biol; 1999; 467():207-15. PubMed ID: 10721058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melatonin protects primary cultures of cerebellar granule neurons from kainate but not from N-methyl-D-aspartate excitotoxicity.
    Giusti P; Gusella M; Lipartiti M; Milani D; Zhu W; Vicini S; Manev H
    Exp Neurol; 1995 Jan; 131(1):39-46. PubMed ID: 7895810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuroprotective effect of melatonin against kainic acid-induced oxidative injury in hippocampal slice culture of rats.
    Kim HA; Lee KH; Lee BH
    Int J Mol Sci; 2014 Apr; 15(4):5940-51. PubMed ID: 24722567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protective role of melatonin in domoic acid-induced neuronal damage in the hippocampus of adult rats.
    Ananth C; Gopalakrishnakone P; Kaur C
    Hippocampus; 2003; 13(3):375-87. PubMed ID: 12722978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melatonin maintains glutathione homeostasis in kainic acid-exposed rat brain tissues.
    Floreani M; Skaper SD; Facci L; Lipartiti M; Giusti P
    FASEB J; 1997 Dec; 11(14):1309-15. PubMed ID: 9409550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tinospora cordifolia as a potential neuroregenerative candidate against glutamate induced excitotoxicity: an in vitro perspective.
    Sharma A; Kaur G
    BMC Complement Altern Med; 2018 Oct; 18(1):268. PubMed ID: 30285727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of melatonin in glutamate-induced neurotoxicity of rat cerebellar granular cell culture.
    Gepdiremen A; Düzenli S; Hacimüftüoglu A; Bulucu D; Süleyman H
    Jpn J Pharmacol; 2000 Dec; 84(4):467-9. PubMed ID: 11202621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ability of GDNF to diminish free radical production leads to protection against kainate-induced excitotoxicity in hippocampus.
    Cheng H; Fu YS; Guo JW
    Hippocampus; 2004; 14(1):77-86. PubMed ID: 15058485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potent neuroprotective properties against the Alzheimer beta-amyloid by an endogenous melatonin-related indole structure, indole-3-propionic acid.
    Chyan YJ; Poeggeler B; Omar RA; Chain DG; Frangione B; Ghiso J; Pappolla MA
    J Biol Chem; 1999 Jul; 274(31):21937-42. PubMed ID: 10419516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melatonin Pretreatment Protects Against Status epilepticus, Glutamate Transport, and Oxidative Stress Induced by Kainic Acid in Zebrafish.
    de Farias ACS; de Pieri Pickler K; Bernardo HT; Baldin SL; Dondossola ER; Rico EP
    Mol Neurobiol; 2022 Jan; 59(1):266-275. PubMed ID: 34665406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroprotective action of the pineal hormone melatonin against excitotoxicity. Receptor abuse-dependent antagonism (RADA).
    Manev H; Uz T; Giusti P
    Ann N Y Acad Sci; 1997 Oct; 825():85-9. PubMed ID: 9369977
    [No Abstract]   [Full Text] [Related]  

  • 13. Intracellular glutathione levels determine cerebellar granule neuron sensitivity to excitotoxic injury by kainic acid.
    Ceccon M; Giusti P; Facci L; Borin G; Imbesi M; Floreani M; Skaper SD
    Brain Res; 2000 Apr; 862(1-2):83-9. PubMed ID: 10799672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro and in vivo protective effects of melatonin against glutamate oxidative stress and neurotoxicity.
    Giusti P; Lipartiti M; Gusella M; Floreani M; Manev H
    Ann N Y Acad Sci; 1997 Oct; 825():79-84. PubMed ID: 9369976
    [No Abstract]   [Full Text] [Related]  

  • 15. Melatonin prevents glutamate-induced oxytosis in the HT22 mouse hippocampal cell line through an antioxidant effect specifically targeting mitochondria.
    Herrera F; Martin V; García-Santos G; Rodriguez-Blanco J; Antolín I; Rodriguez C
    J Neurochem; 2007 Feb; 100(3):736-46. PubMed ID: 17263795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2-Deoxy-D-glucose protects hippocampal neurons against excitotoxic and oxidative injury: evidence for the involvement of stress proteins.
    Lee J; Bruce-Keller AJ; Kruman Y; Chan SL; Mattson MP
    J Neurosci Res; 1999 Jul; 57(1):48-61. PubMed ID: 10397635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sinapic acid attenuates kainic acid-induced hippocampal neuronal damage in mice.
    Kim DH; Yoon BH; Jung WY; Kim JM; Park SJ; Park DH; Huh Y; Park C; Cheong JH; Lee KT; Shin CY; Ryu JH
    Neuropharmacology; 2010; 59(1-2):20-30. PubMed ID: 20363233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Failure of glycine site NMDA receptor antagonists to protect against L-2-chloropropionic acid-induced neurotoxicity highlights the uniqueness of cerebellar NMDA receptors.
    Widdowson PS; Gyte AJ; Upton R; Wyatt I
    Brain Res; 1996 Nov; 738(2):236-42. PubMed ID: 8955518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitotoxicity, oxidative stress, and the neuroprotective potential of melatonin.
    Skaper SD; Floreani M; Ceccon M; Facci L; Giusti P
    Ann N Y Acad Sci; 1999; 890():107-18. PubMed ID: 10668417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melatonin regulates the calcium-buffering proteins, parvalbumin and hippocalcin, in ischemic brain injury.
    Koh PO
    J Pineal Res; 2012 Nov; 53(4):358-65. PubMed ID: 22639951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.