These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8906295)

  • 1. Is quinolinic acid involved in the pathogenesis of hepatic encephalopathy?
    Bergqvist PB; Heyes MP; Bengtsson F
    Adv Exp Med Biol; 1996; 398():397-405. PubMed ID: 8906295
    [No Abstract]   [Full Text] [Related]  

  • 2. Content of quinolinic acid and of other tryptophan metabolites increases in brain regions of rats used as experimental models of hepatic encephalopathy.
    Moroni F; Lombardi G; Carlà V; Pellegrini D; Carassale GL; Cortesini C
    J Neurochem; 1986 Mar; 46(3):869-74. PubMed ID: 2419500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between plasma and brain quinolinic acid levels and the severity of hepatic encephalopathy in animal models of fulminant hepatic failure.
    Basile AS; Saito K; Li Y; Heyes MP
    J Neurochem; 1995 Jun; 64(6):2607-14. PubMed ID: 7760040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain extracellular quinolinic acid in chronic experimental hepatic encephalopathy as assessed by in vivo microdialysis: acute effects of L-tryptophan.
    Bergqvist PB; Heyes MP; Apelqvist G; Butterworth RF; Bengtsson F
    Neuropsychopharmacology; 1996 Oct; 15(4):382-9. PubMed ID: 8887992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The physiopathological role of quinolinic acid in the mammalian central nervous system.
    Lombardi G; Carlà V; Moroni F
    Ann Ist Super Sanita; 1988; 24(3):431-6. PubMed ID: 2973276
    [No Abstract]   [Full Text] [Related]  

  • 6. Selective alterations of extracellular brain amino acids in relation to function in experimental portal-systemic encephalopathy: results of an in vivo microdialysis study.
    Rao VL; Audet RM; Butterworth RF
    J Neurochem; 1995 Sep; 65(3):1221-8. PubMed ID: 7643101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasma and brain levels of oxindole in experimental chronic hepatic encephalopathy: effects of systemic ammonium acetate and L-tryptophan.
    Bergqvist PB; Carpenedo R; Apelqvist G; Moroni F; Bengtsson F
    Pharmacol Toxicol; 1999 Sep; 85(3):138-43. PubMed ID: 10522754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain quinolinic acid in chronic experimental hepatic encephalopathy: effects of an exogenous ammonium acetate challenge.
    Bergqvist PB; Heyes MP; Bugge M; Bengtsson F
    J Neurochem; 1995 Nov; 65(5):2235-40. PubMed ID: 7595512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The relationship between plasma and brain quinolinic acid levels and the severity of hepatic encephalopathy.
    Basile AS; Saito K; al-Mardini H; Record CO; Hughes RD; Harrison P; Williams R; Li Y; Heyes MP
    Gastroenterology; 1995 Mar; 108(3):818-23. PubMed ID: 7875484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kynurenine pathway metabolism in the galactosamine model of hepatic injury.
    Saito K; Seishima M; Noma A; Nagamura Y; Quearry BJ; Markey SP; Heyes MP
    Adv Exp Med Biol; 1996; 398():421-4. PubMed ID: 8906299
    [No Abstract]   [Full Text] [Related]  

  • 11. Tryptophan, adenosine, neurodegeneration and neuroprotection.
    Stone TW; Forrest CM; Mackay GM; Stoy N; Darlington LG
    Metab Brain Dis; 2007 Dec; 22(3-4):337-52. PubMed ID: 17712616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ammonia on cerebral metabolism of rats with portocaval shunts.
    Gjedde A; Lockwood A; Duffy TE; Plum F
    Trans Am Neurol Assoc; 1976; 101():180-1. PubMed ID: 1028230
    [No Abstract]   [Full Text] [Related]  

  • 13. Memantine, a noncompetitive NMDA receptor antagonist improves hyperammonemia-induced encephalopathy and acute hepatic encephalopathy in rats.
    Vogels BA; Maas MA; Daalhuisen J; Quack G; Chamuleau RA
    Hepatology; 1997 Apr; 25(4):820-7. PubMed ID: 9096582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increase in the content of quinolinic acid in cerebrospinal fluid and frontal cortex of patients with hepatic failure.
    Moroni F; Lombardi G; Carlà V; Lal S; Etienne P; Nair NP
    J Neurochem; 1986 Dec; 47(6):1667-71. PubMed ID: 2430055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postsynaptic gamma-aminobutyric acid receptors in hepatic coma following portacaval shunt and hepatic artery ligation in the rat.
    Ferenci P; Zieve L; Ebner J; Zimmermann C; Rzepczynski D
    Metab Brain Dis; 1987 Sep; 2(3):195-200. PubMed ID: 2850456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Experimental studies of the pathomechanism of portal encephalopathy. I. Changes in monoamine oxidase (MAO) activity in the cerebral cortex and cerebellum of rats after portacaval shunt].
    Rokicki W; Rokicki M; Kamiński K; Peciak B; Gebska E
    Neuropatol Pol; 1989; 27(2):199-207. PubMed ID: 2626178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Metabolic consequences of experimental portacaval shunts].
    Franco D; Castaing D; Bismuth H
    Pathol Biol (Paris); 1979 Apr; 27(4):192-6. PubMed ID: 379754
    [No Abstract]   [Full Text] [Related]  

  • 18. Reduced cholecystokinin in the brain of LEC rats with hepatic encephalopathy.
    Tateishi K; Miura Y; Madarame T; Yoshida T; Suzuki K; Takeichi N; Kobayashi H; Matsuoka Y; Sato S
    Regul Pept; 1991 Aug; 35(2):95-101. PubMed ID: 1758973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in brain metabolism in hepatic encephalopathy.
    Hawkins RA; Mans AM; Biebuyck JF
    Neurochem Pathol; 1987; 6(1-2):35-66. PubMed ID: 3306481
    [No Abstract]   [Full Text] [Related]  

  • 20. Brain monoamines after portacaval anastomosis.
    Mans AM; Hawkins RA
    Metab Brain Dis; 1986 Mar; 1(1):45-52. PubMed ID: 3508235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.