BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 8906351)

  • 1. Time-resolved fluorescence. An approach in protein analysis.
    Villari A; Micali N; Fresta M; Trusso S; Puglisi G
    Adv Exp Med Biol; 1996; 398():739-47. PubMed ID: 8906351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence spectral resolution of tryptophan residues in bovine and human serum albumins.
    Tayeh N; Rungassamy T; Albani JR
    J Pharm Biomed Anal; 2009 Sep; 50(2):107-16. PubMed ID: 19473803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectroscopic studies on the interaction between riboflavin and albumins.
    Zhao H; Ge M; Zhang Z; Wang W; Wu G
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Nov; 65(3-4):811-7. PubMed ID: 16530468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between a potent corticosteroid drug - dexamethasone with bovine serum albumin and human serum albumin: a fluorescence quenching and fourier transformation infrared spectroscopy study.
    Naik PN; Chimatadar SA; Nandibewoor ST
    J Photochem Photobiol B; 2010 Sep; 100(3):147-59. PubMed ID: 20573517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous determination of estrogens (ethinylestradiol and norgestimate) concentrations in human and bovine serum albumin by use of fluorescence spectroscopy and multivariate regression analysis.
    Hordge LN; McDaniel KL; Jones DD; Fakayode SO
    Talanta; 2016 May; 152():401-9. PubMed ID: 26992536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultraviolet Resonance Raman Spectra of Serum Albumins.
    Spedalieri C; Plaickner J; Speiser E; Esser N; Kneipp J
    Appl Spectrosc; 2023 Sep; 77(9):1044-1052. PubMed ID: 37415516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectroscopic studies on the interaction of colloidal capped CdS nanoparticles with bovine serum albumin.
    Asha Jhonsi M; Kathiravan A; Renganathan R
    Colloids Surf B Biointerfaces; 2009 Sep; 72(2):167-72. PubMed ID: 19410435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining time-resolved fluorescence with synchronous fluorescence spectroscopy to study bovine serum albumin-curcumin complex during unfolding and refolding processes.
    Barakat C; Patra D
    Luminescence; 2013; 28(2):149-55. PubMed ID: 22311564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of tetramethylpyrazine with two serum albumins by a hybrid spectroscopic method.
    Cheng Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():321-30. PubMed ID: 22484270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence spectrometric study on the interaction of tamibarotene with bovine serum albumin.
    Ye H; Qiu B; Lin Z; Chen G
    Luminescence; 2011; 26(5):336-41. PubMed ID: 22021245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of loratadine with serum albumins studied by fluorescence quenching method.
    Zhou B; Qi ZD; Xiao Q; Dong JX; Zhang YZ; Liu Y
    J Biochem Biophys Methods; 2007 Aug; 70(5):743-7. PubMed ID: 17482267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence spectroscopic study of serum albumin-bromadiolone interaction: fluorimetric determination of bromadiolone.
    Deepa S; Mishra AK
    J Pharm Biomed Anal; 2005 Jul; 38(3):556-63. PubMed ID: 15925260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Second derivative fluorescence spectroscopy of tryptophan in proteins.
    Mozo-Villarías A
    J Biochem Biophys Methods; 2002 Jan; 50(2-3):163-78. PubMed ID: 11741705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence behavior of tryptophan residues of bovine and human serum albumins in ionic surfactant solutions: a comparative study of the two and one tryptophan(s) of bovine and human albumins.
    Moriyama Y; Ohta D; Hachiya K; Mitsui Y; Takeda K
    J Protein Chem; 1996 Apr; 15(3):265-72. PubMed ID: 8804574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interaction between cepharanthine and two serum albumins: multiple spectroscopic and chemometric investigations.
    Cheng Z; Liu R; Jiang X; Xu Q
    Luminescence; 2014 Aug; 29(5):504-15. PubMed ID: 24123839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tyrosine fluorescence probing of conformational changes in tryptophan-lacking domain of albumins.
    Zhdanova NG; Maksimov EG; Arutyunyan AM; Fadeev VV; Shirshin EA
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 174():223-229. PubMed ID: 27918933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitation of aromatic residues in proteins: model compounds for second-derivative spectroscopy.
    Levine RL; Federici MM
    Biochemistry; 1982 May; 21(11):2600-6. PubMed ID: 7093207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Static and dynamic interaction of a naturally occurring photochromic molecule with bovine serum albumin studied by UV-visible absorption and fluorescence spectroscopy.
    Gentili PL; Ortica F; Favaro G
    J Phys Chem B; 2008 Dec; 112(51):16793-801. PubMed ID: 19367911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on binding interactions between clenbuterol hydrochloride and two serum albumins by multispectroscopic approaches in vitro.
    Wang Q; Zhang S
    Luminescence; 2014 Aug; 29(5):492-9. PubMed ID: 24030872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Determination of the proteins in serum albumins by synchronous fluorescence technique with 3-(2-cyanoethyl) cytosine as a probe].
    Cui FL; Wang JL; Cui YR; Qu GR; Lu Y; Fan J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Feb; 28(2):384-8. PubMed ID: 18479028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.