These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
434 related articles for article (PubMed ID: 8906427)
1. The linearized multistage model and the future of quantitative risk assessment. Crump KS Hum Exp Toxicol; 1996 Oct; 15(10):787-98. PubMed ID: 8906427 [TBL] [Abstract][Full Text] [Related]
2. Quantitative risk assessment and the limitations of the linearized multistage model. Lovell DP; Thomas G Hum Exp Toxicol; 1996 Feb; 15(2):87-104. PubMed ID: 8645508 [TBL] [Abstract][Full Text] [Related]
3. A simple method for quantitative risk assessment of non-threshold carcinogens based on the dose descriptor T25. Sanner T; Dybing E; Willems MI; Kroese ED Pharmacol Toxicol; 2001 Jun; 88(6):331-41. PubMed ID: 11453374 [TBL] [Abstract][Full Text] [Related]
4. Chloroform mode of action: implications for cancer risk assessment. Golden RJ; Holm SE; Robinson DE; Julkunen PH; Reese EA Regul Toxicol Pharmacol; 1997 Oct; 26(2):142-55. PubMed ID: 9356278 [TBL] [Abstract][Full Text] [Related]
5. Comparison of cancer slope factors using different statistical approaches. Subramaniam RP; White P; Cogliano VJ Risk Anal; 2006 Jun; 26(3):825-30. PubMed ID: 16834636 [TBL] [Abstract][Full Text] [Related]
6. Linear-No-Threshold Default Assumptions for Noncancer and Nongenotoxic Cancer Risks: A Mathematical and Biological Critique. Bogen KT Risk Anal; 2016 Mar; 36(3):589-604. PubMed ID: 26249816 [TBL] [Abstract][Full Text] [Related]
7. What to do at low doses: a bounding approach for economic analysis. Griffiths CW; Dockins C; Owens N; Simon NB; Axelrad DA Risk Anal; 2002 Aug; 22(4):679-88. PubMed ID: 12224742 [TBL] [Abstract][Full Text] [Related]
8. Incorporating additional biological phenomena into two-stage cancer models. Sielken RL; Bretzlaff RS; Stevenson DE Prog Clin Biol Res; 1994; 387():237-60. PubMed ID: 7972250 [TBL] [Abstract][Full Text] [Related]
9. Scientific analysis of the proposed uses of the T25 dose descriptor in chemical carcinogen regulation. Roberts RA; Crump KS; Lutz WK; Wiegand HJ; Williams GM; Harrison PT; Purchase IF Arch Toxicol; 2001 Nov; 75(9):507-12. PubMed ID: 11760810 [TBL] [Abstract][Full Text] [Related]
10. Reducing uncertainty in risk assessment by using specific knowledge to replace default options. McClellan RO Drug Metab Rev; 1996; 28(1-2):149-79. PubMed ID: 8744594 [TBL] [Abstract][Full Text] [Related]
11. Regulatory cancer risk assessment based on a quick estimate of a benchmark dose derived from the maximum tolerated dose. Gaylor DW; Swirsky Gold L Regul Toxicol Pharmacol; 1998 Dec; 28(3):222-5. PubMed ID: 10049793 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of the carcinogenicity of 1,1-dichloroethylene (vinylidene chloride). Roberts SM; Jordan KE; Warren DA; Britt JK; James RC Regul Toxicol Pharmacol; 2002 Feb; 35(1):44-55. PubMed ID: 11846635 [TBL] [Abstract][Full Text] [Related]
13. U.S. Environmental Protection Agency's revised guidelines for carcinogen risk assessment: evaluating a postulated mode of carcinogenic action in guiding dose-response extrapolation. Wiltse JA; Dellarco VL Mutat Res; 2000 Jan; 464(1):105-15. PubMed ID: 10633182 [TBL] [Abstract][Full Text] [Related]
14. Addressing nonlinearity in the exposure-response relationship for a genotoxic carcinogen: cancer potency estimates for ethylene oxide. Kirman CR; Sweeney LM; Teta MJ; Sielken RL; Valdez-Flores C; Albertini RJ; Gargas ML Risk Anal; 2004 Oct; 24(5):1165-83. PubMed ID: 15563286 [TBL] [Abstract][Full Text] [Related]
15. Cancer risk assessment for 1,3-butadiene: data integration opportunities. Preston RJ Chem Biol Interact; 2007 Mar; 166(1-3):150-5. PubMed ID: 16647696 [TBL] [Abstract][Full Text] [Related]
16. An improved procedure for low-dose carcinogenic risk assessment from animal data. Crump KS J Environ Pathol Toxicol Oncol; 1984 Jul; 5(4-5):339-48. PubMed ID: 6520736 [TBL] [Abstract][Full Text] [Related]
17. Analysis of in vivo mutation data can inform cancer risk assessment. Moore MM; Heflich RH; Haber LT; Allen BC; Shipp AM; Kodell RL Regul Toxicol Pharmacol; 2008 Jul; 51(2):151-61. PubMed ID: 18321622 [TBL] [Abstract][Full Text] [Related]
18. Bayesian derivation of an oral cancer slope factor distribution for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Naufal Z; Kathman S; Wilson C Regul Toxicol Pharmacol; 2009 Oct; 55(1):69-75. PubMed ID: 19505520 [TBL] [Abstract][Full Text] [Related]
19. Comparison of cancer risk estimates based on a variety of risk assessment methodologies. Gold LS; Gaylor DW; Slone TH Regul Toxicol Pharmacol; 2003 Feb; 37(1):45-53. PubMed ID: 12662908 [TBL] [Abstract][Full Text] [Related]
20. Implications of dose-dependent target tissue absorption for linear and non-linear/threshold approaches in development of a cancer-based oral toxicity factor for hexavalent chromium. Haney J Regul Toxicol Pharmacol; 2015 Jul; 72(2):194-201. PubMed ID: 25910675 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]