BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 8906427)

  • 21. Another flaw in the linearized multistage model upper bounds on human cancer potency.
    Sielken RL; Stevenson DE
    Regul Toxicol Pharmacol; 1994 Feb; 19(1):106-14. PubMed ID: 8159810
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental design constraints on carcinogenic potency estimates.
    Rieth JP; Starr TB
    J Toxicol Environ Health; 1989; 27(3):287-96. PubMed ID: 2754755
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving cancer dose-response characterization by using physiologically based pharmacokinetic modeling: an analysis of pooled data for acrylonitrile-induced brain tumors to assess cancer potency in the rat.
    Kirman CR; Hays SM; Kedderis GL; Gargas ML; Strother DE
    Risk Anal; 2000 Feb; 20(1):135-51. PubMed ID: 10795346
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reassessing benzene risks using internal doses and Monte-Carlo uncertainty analysis.
    Cox LA
    Environ Health Perspect; 1996 Dec; 104 Suppl 6(Suppl 6):1413-29. PubMed ID: 9118928
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Risk assessment of carcinogens in food.
    Barlow S; Schlatter J
    Toxicol Appl Pharmacol; 2010 Mar; 243(2):180-90. PubMed ID: 19909764
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Update of potency factors for asbestos-related lung cancer and mesothelioma.
    Berman DW; Crump KS
    Crit Rev Toxicol; 2008; 38 Suppl 1():1-47. PubMed ID: 18671157
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Linear interpolation algorithm for low dose risk assessment of toxic substances.
    Gaylor DW; Kodell RL
    J Environ Pathol Toxicol; 1980 Nov; 4(5-6):305-12. PubMed ID: 7217854
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A trichloroethylene risk assessment using a Monte Carlo analysis of parameter uncertainty in conjunction with physiologically-based pharmacokinetic modeling.
    Cronin WJ; Oswald EJ; Shelley ML; Fisher JW; Flemming CD
    Risk Anal; 1995 Oct; 15(5):555-65. PubMed ID: 7501875
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mathematical models in quantitative assessment of carcinogenic risk.
    Park CN
    Regul Toxicol Pharmacol; 1989 Jun; 9(3):236-43. PubMed ID: 2756171
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human respiratory tract cancer risks of inhaled formaldehyde: dose-response predictions derived from biologically-motivated computational modeling of a combined rodent and human dataset.
    Conolly RB; Kimbell JS; Janszen D; Schlosser PM; Kalisak D; Preston J; Miller FJ
    Toxicol Sci; 2004 Nov; 82(1):279-96. PubMed ID: 15254341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An adjustment factor for mode-of-action uncertainty with dual-mode carcinogens: the case of naphthalene-induced nasal tumors in rats.
    Bogen KT
    Risk Anal; 2008 Aug; 28(4):1033-51. PubMed ID: 18564993
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of a site-specific reference dose for methylmercury for fish-eating populations.
    Shipp AM; Gentry PR; Lawrence G; Van Landingham C; Covington T; Clewell HJ; Gribben K; Crump K
    Toxicol Ind Health; 2000 Nov; 16(9-10):335-438. PubMed ID: 11762928
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unveiling variability and uncertainty for better science and decisions on cancer risks from environmental chemicals.
    Bogen KT
    Risk Anal; 2014 Oct; 34(10):1795-806. PubMed ID: 25407123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a unit risk factor for 1,3-butadiene based on an updated carcinogenic toxicity assessment.
    Grant RL; Haney J; Curry AL; Honeycutt M
    Risk Anal; 2009 Dec; 29(12):1726-42. PubMed ID: 19878488
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Challenges to default assumptions stimulate comprehensive realism as a new tier in quantitative cancer risk assessment.
    Sielken RL; Bretzlaff RS; Stevenson DE
    Regul Toxicol Pharmacol; 1995 Apr; 21(2):270-80. PubMed ID: 7644717
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The use of mode of action information in risk assessment: quantitative key events/dose-response framework for modeling the dose-response for key events.
    Simon TW; Simons SS; Preston RJ; Boobis AR; Cohen SM; Doerrer NG; Fenner-Crisp PA; McMullin TS; McQueen CA; Rowlands JC;
    Crit Rev Toxicol; 2014 Aug; 44 Suppl 3():17-43. PubMed ID: 25070415
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparison of statistical methods for low dose extrapolation utilizing time-to-tumor data.
    Krewski D; Crump KS; Farmer J; Gaylor DW; Howe R; Portier C; Salsburg D; Sielken RL; Van Ryzin J
    Fundam Appl Toxicol; 1983; 3(3):140-60. PubMed ID: 6884628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On use of the multistage dose-response model for assessing laboratory animal carcinogenicity.
    Nitcheva DK; Piegorsch WW; West RW
    Regul Toxicol Pharmacol; 2007 Jul; 48(2):135-47. PubMed ID: 17490794
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Risk assessment of inhaled chloroform based on its mode of action.
    Wolf DC; Butterworth BE
    Toxicol Pathol; 1997; 25(1):49-52. PubMed ID: 9061851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lessons learned in applying the U.S. EPA proposed cancer guidelines to specific compounds.
    Andersen ME; Meek ME; Boorman GA; Brusick DJ; Cohen SM; Dragan YP; Frederick CB; Goodman JI; Hard GC; O'Flaherty EJ; Robinson DE
    Toxicol Sci; 2000 Feb; 53(2):159-72. PubMed ID: 10696764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.