These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 8906494)
1. GABAergic inputs to the nucleus rotundus (pulvinar inferior) of the pigeon (columba livia). Mpodozis J; Cox K; Shimizu T; Bischof HJ; Woodson W; Karten HJ J Comp Neurol; 1996 Oct; 374(2):204-22. PubMed ID: 8906494 [TBL] [Abstract][Full Text] [Related]
2. Two distinct populations of tectal neurons have unique connections within the retinotectorotundal pathway of the pigeon (Columba livia). Karten HJ; Cox K; Mpodozis J J Comp Neurol; 1997 Oct; 387(3):449-65. PubMed ID: 9335427 [TBL] [Abstract][Full Text] [Related]
3. Ontogeny of the tectorotundal pathway in chicks (Gallus gallus): birthdating and pathway tracing study. Wu CC; Russell RM; Karten HJ J Comp Neurol; 2000 Jan; 417(1):115-32. PubMed ID: 10660892 [TBL] [Abstract][Full Text] [Related]
4. Pharmacological manipulation of GABA activity in nucleus subpretectalis/interstitio-pretecto-subpretectalis (SP/IPS) impairs figure-ground discrimination in pigeons: Running head: SP/IPS in figure-ground segregation. Acerbo MJ; Lazareva OF Behav Brain Res; 2018 May; 344():1-8. PubMed ID: 29408282 [TBL] [Abstract][Full Text] [Related]
5. The architecture of an inhibitory sidepath within the avian tectofugal system. Theiss MP; Hellmann B; Güntürkün O Neuroreport; 2003 May; 14(6):879-82. PubMed ID: 12858052 [TBL] [Abstract][Full Text] [Related]
6. Timing of ascending and descending visual signals predicts the response mode of single cells in the thalamic nucleus rotundus of the pigeon (Columba livia). Folta K; Troje NF; Güntürkün O Brain Res; 2007 Feb; 1132(1):100-9. PubMed ID: 17184744 [TBL] [Abstract][Full Text] [Related]
7. Observations on the projections and intrinsic organization of the pigeon optic tectum: an autoradiographic study based on anterograde and retrograde, axonal and dendritic flow. Hunt SP; Künzle H J Comp Neurol; 1976 Nov; 170(2):153-72. PubMed ID: 62764 [TBL] [Abstract][Full Text] [Related]
8. The distribution of GABA-containing perikarya, fibers, and terminals in the forebrain and midbrain of pigeons, with particular reference to the basal ganglia and its projection targets. Veenman CL; Reiner A J Comp Neurol; 1994 Jan; 339(2):209-50. PubMed ID: 8300906 [TBL] [Abstract][Full Text] [Related]
9. Organisation of the tectorotundal and SP/IPS-rotundal projections in the chick. Deng C; Rogers LJ J Comp Neurol; 1998 May; 394(2):171-85. PubMed ID: 9552124 [TBL] [Abstract][Full Text] [Related]
10. Tracing developing pathways in the brain: a comparison of carbocyanine dyes and cholera toxin b subunit. Wu CC; Russell RM; Nguyen RT; Karten HJ Neuroscience; 2003; 117(4):831-45. PubMed ID: 12654336 [TBL] [Abstract][Full Text] [Related]
11. Electron microscopic data on the neurons of nuclei subpretectalis and posterior-ventralis thalami. A combined immunohistochemical study. Tömböl T; Németh A; Sebestény T; Alpár A Anat Embryol (Berl); 1999 Feb; 199(2):169-83. PubMed ID: 9930623 [TBL] [Abstract][Full Text] [Related]
12. Projection of the nucleus pretectalis to a retinorecipient tectal layer in the pigeon (Columba livia). Gamlin PD; Reiner A; Keyser KT; Brecha N; Karten HJ J Comp Neurol; 1996 May; 368(3):424-38. PubMed ID: 8725349 [TBL] [Abstract][Full Text] [Related]
13. A morphological study of the nucleus subpretectalis of the pigeon. Freund N; Güntürkün O; Manns M Brain Res Bull; 2008 Mar; 75(2-4):491-3. PubMed ID: 18331920 [TBL] [Abstract][Full Text] [Related]
14. The turtle thalamic anterior entopeduncular nucleus shares connectional and neurochemical characteristics with the mammalian thalamic reticular nucleus. Kenigfest N; Belekhova M; Repérant J; Rio JP; Ward R; Vesselkin N J Chem Neuroanat; 2005 Oct; 30(2-3):129-43. PubMed ID: 16140498 [TBL] [Abstract][Full Text] [Related]
15. A second ascending visual pathway from the optic tectum to the telencephalon in the pigeon (Columba livia). Gamlin PD; Cohen DH J Comp Neurol; 1986 Aug; 250(3):296-310. PubMed ID: 3745517 [TBL] [Abstract][Full Text] [Related]
16. Reductions in N-acetylaspartylglutamate and the 67 kDa form of glutamic acid decarboxylase immunoreactivities in the visual system of albino and pigmented rats after optic nerve transections. Moffett JR J Comp Neurol; 2003 Apr; 458(3):221-39. PubMed ID: 12619078 [TBL] [Abstract][Full Text] [Related]
17. Visual and somatosensory inputs to the avian song system via nucleus uvaeformis (Uva) and a comparison with the projections of a similar thalamic nucleus in a nonsongbird, Columba livia. Wild JM J Comp Neurol; 1994 Nov; 349(4):512-35. PubMed ID: 7860787 [TBL] [Abstract][Full Text] [Related]
18. An immunocytochemical analysis of the lateral geniculate complex in the pigeon (Columba livia). Güntürkün O; Karten HJ J Comp Neurol; 1991 Dec; 314(4):721-49. PubMed ID: 1687743 [TBL] [Abstract][Full Text] [Related]
19. The distribution of glutamic acid decarboxylase immunoreactivity in the diencephalon of the opossum and rabbit. Penny GR; Conley M; Schmechel DE; Diamond IT J Comp Neurol; 1984 Sep; 228(1):38-56. PubMed ID: 6090511 [TBL] [Abstract][Full Text] [Related]
20. Projections of the nucleus lentiformis mesencephali in pigeons (Columba livia): a comparison of the morphology and distribution of neurons with different efferent projections. Pakan JM; Krueger K; Kelcher E; Cooper S; Todd KG; Wylie DR J Comp Neurol; 2006 Mar; 495(1):84-99. PubMed ID: 16432900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]