BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8906494)

  • 1. GABAergic inputs to the nucleus rotundus (pulvinar inferior) of the pigeon (columba livia).
    Mpodozis J; Cox K; Shimizu T; Bischof HJ; Woodson W; Karten HJ
    J Comp Neurol; 1996 Oct; 374(2):204-22. PubMed ID: 8906494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two distinct populations of tectal neurons have unique connections within the retinotectorotundal pathway of the pigeon (Columba livia).
    Karten HJ; Cox K; Mpodozis J
    J Comp Neurol; 1997 Oct; 387(3):449-65. PubMed ID: 9335427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ontogeny of the tectorotundal pathway in chicks (Gallus gallus): birthdating and pathway tracing study.
    Wu CC; Russell RM; Karten HJ
    J Comp Neurol; 2000 Jan; 417(1):115-32. PubMed ID: 10660892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological manipulation of GABA activity in nucleus subpretectalis/interstitio-pretecto-subpretectalis (SP/IPS) impairs figure-ground discrimination in pigeons: Running head: SP/IPS in figure-ground segregation.
    Acerbo MJ; Lazareva OF
    Behav Brain Res; 2018 May; 344():1-8. PubMed ID: 29408282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The architecture of an inhibitory sidepath within the avian tectofugal system.
    Theiss MP; Hellmann B; Güntürkün O
    Neuroreport; 2003 May; 14(6):879-82. PubMed ID: 12858052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Timing of ascending and descending visual signals predicts the response mode of single cells in the thalamic nucleus rotundus of the pigeon (Columba livia).
    Folta K; Troje NF; Güntürkün O
    Brain Res; 2007 Feb; 1132(1):100-9. PubMed ID: 17184744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observations on the projections and intrinsic organization of the pigeon optic tectum: an autoradiographic study based on anterograde and retrograde, axonal and dendritic flow.
    Hunt SP; Künzle H
    J Comp Neurol; 1976 Nov; 170(2):153-72. PubMed ID: 62764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The distribution of GABA-containing perikarya, fibers, and terminals in the forebrain and midbrain of pigeons, with particular reference to the basal ganglia and its projection targets.
    Veenman CL; Reiner A
    J Comp Neurol; 1994 Jan; 339(2):209-50. PubMed ID: 8300906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organisation of the tectorotundal and SP/IPS-rotundal projections in the chick.
    Deng C; Rogers LJ
    J Comp Neurol; 1998 May; 394(2):171-85. PubMed ID: 9552124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracing developing pathways in the brain: a comparison of carbocyanine dyes and cholera toxin b subunit.
    Wu CC; Russell RM; Nguyen RT; Karten HJ
    Neuroscience; 2003; 117(4):831-45. PubMed ID: 12654336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron microscopic data on the neurons of nuclei subpretectalis and posterior-ventralis thalami. A combined immunohistochemical study.
    Tömböl T; Németh A; Sebestény T; Alpár A
    Anat Embryol (Berl); 1999 Feb; 199(2):169-83. PubMed ID: 9930623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Projection of the nucleus pretectalis to a retinorecipient tectal layer in the pigeon (Columba livia).
    Gamlin PD; Reiner A; Keyser KT; Brecha N; Karten HJ
    J Comp Neurol; 1996 May; 368(3):424-38. PubMed ID: 8725349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A morphological study of the nucleus subpretectalis of the pigeon.
    Freund N; Güntürkün O; Manns M
    Brain Res Bull; 2008 Mar; 75(2-4):491-3. PubMed ID: 18331920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The turtle thalamic anterior entopeduncular nucleus shares connectional and neurochemical characteristics with the mammalian thalamic reticular nucleus.
    Kenigfest N; Belekhova M; Repérant J; Rio JP; Ward R; Vesselkin N
    J Chem Neuroanat; 2005 Oct; 30(2-3):129-43. PubMed ID: 16140498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A second ascending visual pathway from the optic tectum to the telencephalon in the pigeon (Columba livia).
    Gamlin PD; Cohen DH
    J Comp Neurol; 1986 Aug; 250(3):296-310. PubMed ID: 3745517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reductions in N-acetylaspartylglutamate and the 67 kDa form of glutamic acid decarboxylase immunoreactivities in the visual system of albino and pigmented rats after optic nerve transections.
    Moffett JR
    J Comp Neurol; 2003 Apr; 458(3):221-39. PubMed ID: 12619078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual and somatosensory inputs to the avian song system via nucleus uvaeformis (Uva) and a comparison with the projections of a similar thalamic nucleus in a nonsongbird, Columba livia.
    Wild JM
    J Comp Neurol; 1994 Nov; 349(4):512-35. PubMed ID: 7860787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An immunocytochemical analysis of the lateral geniculate complex in the pigeon (Columba livia).
    Güntürkün O; Karten HJ
    J Comp Neurol; 1991 Dec; 314(4):721-49. PubMed ID: 1687743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The distribution of glutamic acid decarboxylase immunoreactivity in the diencephalon of the opossum and rabbit.
    Penny GR; Conley M; Schmechel DE; Diamond IT
    J Comp Neurol; 1984 Sep; 228(1):38-56. PubMed ID: 6090511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Projections of the nucleus lentiformis mesencephali in pigeons (Columba livia): a comparison of the morphology and distribution of neurons with different efferent projections.
    Pakan JM; Krueger K; Kelcher E; Cooper S; Todd KG; Wylie DR
    J Comp Neurol; 2006 Mar; 495(1):84-99. PubMed ID: 16432900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.