BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8906975)

  • 1. The stability of transmembrane helices: a molecular dynamics study on the isolated helices of bacteriorhodopsin.
    Iyer LK; Vishveshwara S
    Biopolymers; 1996 Mar; 38(3):401-21. PubMed ID: 8906975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Packing of transmembrane helices in bacteriorhodopsin folding: structure and thermodynamics.
    Chen CC; Wei CC; Sun YC; Chen CM
    J Struct Biol; 2008 May; 162(2):237-47. PubMed ID: 18262435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of the positioning of the seven transmembrane alpha-helices of bacteriorhodopsin. A molecular simulation study.
    Tuffery P; Etchebest C; Popot JL; Lavery R
    J Mol Biol; 1994 Mar; 236(4):1105-22. PubMed ID: 8120890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proline residues in transmembrane alpha helices affect the folding of bacteriorhodopsin.
    Lu H; Marti T; Booth PJ
    J Mol Biol; 2001 Apr; 308(2):437-46. PubMed ID: 11327778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential unfolding of individual helices of bacterioopsin observed in molecular dynamics simulations of extraction from the purple membrane.
    Seeber M; Fanelli F; Paci E; Caflisch A
    Biophys J; 2006 Nov; 91(9):3276-84. PubMed ID: 16861280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacteriorhodopsin can be refolded from two independently stable transmembrane helices and the complementary five-helix fragment.
    Kahn TW; Engelman DM
    Biochemistry; 1992 Jul; 31(26):6144-51. PubMed ID: 1627558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulation of the unfolding of individual bacteriorhodopsin helices in sodium dodecyl sulfate micelles.
    Krishnamani V; Lanyi JK
    Biochemistry; 2012 Feb; 51(6):1061-9. PubMed ID: 22304411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of alpha-helix propensity within the context of a folded protein. Sites 44 and 131 in bacteriophage T4 lysozyme.
    Blaber M; Zhang XJ; Lindstrom JD; Pepiot SD; Baase WA; Matthews BW
    J Mol Biol; 1994 Jan; 235(2):600-24. PubMed ID: 8289284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of the structural features of integral-membrane proteins reverse-environment prediction of integral membrane protein structure (REPIMPS).
    Dastmalchi S; Morris MB; Church WB
    Protein Sci; 2001 Aug; 10(8):1529-38. PubMed ID: 11468350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics of individual alpha-helices of bacteriorhodopsin in dimyristol phosphatidylocholine. I. Structure and dynamics.
    Woolf TB
    Biophys J; 1997 Nov; 73(5):2376-92. PubMed ID: 9370432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence divergence analysis for the prediction of seven-helix membrane protein structures: I. Comparison with bacteriorhodopsin.
    Du P; Alkorta I
    Protein Eng; 1994 Oct; 7(10):1221-9. PubMed ID: 7855137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation studies on bacteriorhodopsin bundle of transmembrane alpha segments.
    Son HS; Kerr ID; Sansom MS
    Eur Biophys J; 2000; 28(8):663-73. PubMed ID: 10663533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of helix associations for insertion of a retinal molecule and distortions of helix structures in bacteriorhodopsin.
    Urano R; Okamoto Y
    J Chem Phys; 2015 Dec; 143(23):235101. PubMed ID: 26696075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Glu/Arg, Asp/Arg, and Glu/Lys Salt Bridges on α-Helical Stability and Folding Kinetics.
    Meuzelaar H; Vreede J; Woutersen S
    Biophys J; 2016 Jun; 110(11):2328-2341. PubMed ID: 27276251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seven-helix bundles: molecular modeling via restrained molecular dynamics.
    Sansom MS; Son HS; Sankararamakrishnan R; Kerr ID; Breed J
    Biophys J; 1995 Apr; 68(4):1295-310. PubMed ID: 7787019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ser and Thr residues modulate the conformation of pro-kinked transmembrane alpha-helices.
    Deupi X; Olivella M; Govaerts C; Ballesteros JA; Campillo M; Pardo L
    Biophys J; 2004 Jan; 86(1 Pt 1):105-15. PubMed ID: 14695254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Position of helical kinks in membrane protein crystal structures and the accuracy of computational prediction.
    Hall SE; Roberts K; Vaidehi N
    J Mol Graph Model; 2009; 27(8):944-50. PubMed ID: 19285892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Helical reorganization in the context of membrane protein folding: Insights from simulations with bacteriorhodopsin (BR) fragments.
    Chatterjee H; Mahapatra AJ; Zacharias M; Sengupta N
    Biochim Biophys Acta Biomembr; 2024 Jun; 1866(5):184333. PubMed ID: 38740122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biophysical study of integral membrane protein folding.
    Hunt JF; Earnest TN; Bousché O; Kalghatgi K; Reilly K; Horváth C; Rothschild KJ; Engelman DM
    Biochemistry; 1997 Dec; 36(49):15156-76. PubMed ID: 9398244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.