BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8906975)

  • 21. Comparison of helix interactions in membrane and soluble alpha-bundle proteins.
    Eilers M; Patel AB; Liu W; Smith SO
    Biophys J; 2002 May; 82(5):2720-36. PubMed ID: 11964258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimal potentials for predicting inter-helical packing in transmembrane proteins.
    Dobbs H; Orlandini E; Bonaccini R; Seno F
    Proteins; 2002 Nov; 49(3):342-9. PubMed ID: 12360524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assembly of transmembrane helices of simple polytopic membrane proteins from sequence conservation patterns.
    Park Y; Helms V
    Proteins; 2006 Sep; 64(4):895-905. PubMed ID: 16807902
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proposed arrangement of the seven transmembrane helices in the secretin receptor family.
    Tams JW; Knudsen SM; Fahrenkrug J
    Recept Channels; 1998; 5(2):79-90. PubMed ID: 9606712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The primary structures of helices A to G of three new bacteriorhodopsin-like retinal proteins.
    Otomo J; Urabe Y; Tomioka H; Sasabe H
    J Gen Microbiol; 1992 Nov; 138(11):2389-96. PubMed ID: 1479357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Free energies of amino acid side-chain rotamers in alpha-helices, beta-sheets and alpha-helix N-caps.
    Stapley BJ; Doig AJ
    J Mol Biol; 1997 Sep; 272(3):456-64. PubMed ID: 9325103
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A hydrogen bonded chain in bacteriorhodopsin by computer modelling approach.
    Sankara-Ramakrishnan R; Vishveshwara S
    J Biomol Struct Dyn; 1989 Aug; 7(1):187-205. PubMed ID: 2818868
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computer simulations of membrane protein folding: structure and dynamics.
    Chen CM; Chen CC
    Biophys J; 2003 Mar; 84(3):1902-8. PubMed ID: 12609892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulation studies on bacteriorhodopsin alpha-helices.
    Son HS; Sansom MS
    Eur Biophys J; 2000; 28(8):674-82. PubMed ID: 10663534
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rotational orientation of transmembrane alpha-helices in bacteriorhodopsin. A neutron diffraction study.
    Samatey FA; Zaccaï G; Engelman DM; Etchebest C; Popot JL
    J Mol Biol; 1994 Mar; 236(4):1093-104. PubMed ID: 8120889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of proline-containing alpha-helix (helix F model of bacteriorhodopsin) by molecular dynamics studies.
    Sankararamakrishnan R; Vishveshwara S
    Proteins; 1993 Jan; 15(1):26-41. PubMed ID: 8451238
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of stability predictions and simulated unfolding of rhodopsin structures.
    Tastan O; Yu E; Ganapathiraju M; Aref A; Rader AJ; Klein-Seetharaman J
    Photochem Photobiol; 2007; 83(2):351-62. PubMed ID: 17576347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [1H-15N NMR signal assignment and secondary structure of bacteriorhodopsin (1-231) in solution].
    Grabchuk IA; Orekhov VIu; Musina LIu; Arsen'ev AS
    Bioorg Khim; 1997 Aug; 23(8):616-29. PubMed ID: 9490623
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of stand-alone polar residue on membrane protein stability and structure.
    Chang YC; Cao Z; Chen WT; Huang WC
    Biochim Biophys Acta Biomembr; 2024 Jun; 1866(5):184325. PubMed ID: 38653423
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The occurrence of C--H...O hydrogen bonds in alpha-helices and helix termini in globular proteins.
    Manikandan K; Ramakumar S
    Proteins; 2004 Sep; 56(4):768-81. PubMed ID: 15281129
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of protein transmembrane helical regions by a neural network.
    Dombi GW; Lawrence J
    Protein Sci; 1994 Apr; 3(4):557-66. PubMed ID: 8003974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the use of the transmembrane domain of bacteriorhodopsin as a template for modeling the three-dimensional structure of guanine nucleotide-binding regulatory protein-coupled receptors.
    Pardo L; Ballesteros JA; Osman R; Weinstein H
    Proc Natl Acad Sci U S A; 1992 May; 89(9):4009-12. PubMed ID: 1315046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A triangle lattice model that predicts transmembrane helix configuration using a polar jigsaw puzzle.
    Hirokawa T; Uechi J; Sasamoto H; Suwa M; Mitaku S
    Protein Eng; 2000 Nov; 13(11):771-8. PubMed ID: 11161108
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular dynamics simulations of individual alpha-helices of bacteriorhodopsin in dimyristoylphosphatidylcholine. II. Interaction energy analysis.
    Woolf TB
    Biophys J; 1998 Jan; 74(1):115-31. PubMed ID: 9449316
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sequence homology between bacteriorhodopsin and G-protein coupled receptors: exon shuffling or evolution by duplication?
    Taylor EW; Agarwal A
    FEBS Lett; 1993 Jul; 325(3):161-6. PubMed ID: 8319802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.