BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8906975)

  • 61. Helix packing in polytopic membrane proteins: role of glycine in transmembrane helix association.
    Javadpour MM; Eilers M; Groesbeek M; Smith SO
    Biophys J; 1999 Sep; 77(3):1609-18. PubMed ID: 10465772
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Significance of low-frequency local fluctuation motions in the transmembrane B and C alpha-helices of bacteriorhodopsin, to facilitate efficient proton uptake from the cytoplasmic surface, as revealed by site-directed solid-state 13C NMR.
    Kira A; Tanio M; Tuzi S; Saitô H
    Eur Biophys J; 2004 Nov; 33(7):580-8. PubMed ID: 15133647
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Alpha helix capping in synthetic model peptides by reciprocal side chain-main chain interactions: evidence for an N terminal "capping box".
    Zhou HX; Lyu P; Wemmer DE; Kallenbach NR
    Proteins; 1994 Jan; 18(1):1-7. PubMed ID: 8146119
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Slow alpha helix formation during folding of a membrane protein.
    Riley ML; Wallace BA; Flitsch SL; Booth PJ
    Biochemistry; 1997 Jan; 36(1):192-6. PubMed ID: 8993333
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Factors that affect the stabilization of alpha-helices in short peptides by a capping box.
    Petukhov M; Yumoto N; Murase S; Onmura R; Yoshikawa S
    Biochemistry; 1996 Jan; 35(2):387-97. PubMed ID: 8555208
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The role of proline residues in the dynamics of transmembrane helices: the case of bacteriorhodopsin.
    Perálvarez-Marín A; Bourdelande JL; Querol E; Padrós E
    Mol Membr Biol; 2006; 23(2):127-35. PubMed ID: 16754356
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Influence of the g- conformation of Ser and Thr on the structure of transmembrane helices.
    Deupi X; Olivella M; Sanz A; Dölker N; Campillo M; Pardo L
    J Struct Biol; 2010 Jan; 169(1):116-23. PubMed ID: 19766191
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Free energy of membrane protein unfolding derived from single-molecule force measurements.
    Preiner J; Janovjak H; Rankl C; Knaus H; Cisneros DA; Kedrov A; Kienberger F; Muller DJ; Hinterdorfer P
    Biophys J; 2007 Aug; 93(3):930-7. PubMed ID: 17483176
    [TBL] [Abstract][Full Text] [Related]  

  • 69. An energy-based approach to packing the 7-helix bundle of bacteriorhodopsin.
    Chou KC; Carlacci L; Maggiora GM; Parodi LA; Schulz MW
    Protein Sci; 1992 Jun; 1(6):810-27. PubMed ID: 1304922
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Hydrophobic organization of alpha-helix membrane bundle in bacteriorhodopsin.
    Efremov RG; Vergoten G
    J Protein Chem; 1996 Jan; 15(1):63-76. PubMed ID: 8838591
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Simulation of the packing of idealized transmembrane alpha-helix bundles.
    Son HS; Sansom MS
    Eur Biophys J; 1999; 28(6):489-98. PubMed ID: 10460342
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Conformational changes of bacteriorhodopsin along the proton-conduction chain as studied with (13)C NMR of [3-(13)C]Ala-labeled protein: arg(82) may function as an information mediator.
    Tanio M; Tuzi S; Yamaguchi S; Kawaminami R; Naito A; Needleman R; Lanyi JK; Saitô H
    Biophys J; 1999 Sep; 77(3):1577-84. PubMed ID: 10465768
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Distribution of charged residues stabilizes individual helices in myoglobins.
    Kallenbach NR; Lu M; Vasant Kumar N; Nelson JW
    J Biomol Struct Dyn; 1990 Feb; 7(4):973-83. PubMed ID: 2310526
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Structural cassette mutagenesis in a de novo designed protein: proof of a novel concept for examining protein folding and stability.
    Kwok SC; Tripet B; Man JH; Chana MS; Lavigne P; Mant CT; Hodges RS
    Biopolymers; 1998; 47(1):101-23. PubMed ID: 9692331
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Glutamic acid residues of bacteriorhodopsin at the extracellular surface as determinants for conformation and dynamics as revealed by site-directed solid-state 13C NMR.
    Saitô H; Yamaguchi S; Ogawa K; Tuzi S; Márquez M; Sanz C; Padrós E
    Biophys J; 2004 Mar; 86(3):1673-81. PubMed ID: 14990495
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Molecular dynamics study of the M412 intermediate of bacteriorhodopsin.
    Xu D; Sheves M; Schulten K
    Biophys J; 1995 Dec; 69(6):2745-60. PubMed ID: 8599681
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Helix packing moments reveal diversity and conservation in membrane protein structure.
    Liu W; Eilers M; Patel AB; Smith SO
    J Mol Biol; 2004 Mar; 337(3):713-29. PubMed ID: 15019789
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Stability of bacteriorhodopsin alpha-helices and loops analyzed by single-molecule force spectroscopy.
    Müller DJ; Kessler M; Oesterhelt F; Möller C; Oesterhelt D; Gaub H
    Biophys J; 2002 Dec; 83(6):3578-88. PubMed ID: 12496125
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Uniformity, ideality, and hydrogen bonds in transmembrane alpha-helices.
    Kim S; Cross TA
    Biophys J; 2002 Oct; 83(4):2084-95. PubMed ID: 12324426
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Polarity conserved positions in transmembrane domains of G-protein coupled receptors and bacteriorhodopsin.
    Zhang D; Weinstein H
    FEBS Lett; 1994 Jan; 337(2):207-12. PubMed ID: 8287978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.