BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 8907126)

  • 1. Regulation of myocardial contractility.
    Opie LH
    J Cardiovasc Pharmacol; 1995; 26 Suppl 1():S1-9. PubMed ID: 8907126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulation of excitation-contraction coupling in cardiac muscle. A study of the regulatory role of calcium binding to troponin C.
    Michailova A; Spassov V
    Gen Physiol Biophys; 1997 Mar; 16(1):29-38. PubMed ID: 9290941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of conserved, acidic residues in the N-terminal domain of troponin C in calcium-dependent regulation.
    Kobayashi T; Zhao X; Wade R; Collins JH
    Biochemistry; 1999 Apr; 38(17):5386-91. PubMed ID: 10220325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a molecular understanding of contractility.
    Rüegg JC
    Cardioscience; 1990 Sep; 1(3):163-8. PubMed ID: 2102805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of action of calcium-sensitizing drugs.
    Haikala H; Linden IB
    J Cardiovasc Pharmacol; 1995; 26 Suppl 1():S10-9. PubMed ID: 8907127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The advances in contractile modulation mechanism of the cardiomyocytes and the smooth muscle cells].
    Lü J; Zang WJ; Zhang CH
    Sheng Li Ke Xue Jin Zhan; 2003 Jul; 34(3):207-11. PubMed ID: 14628464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-induced structural transition in the regulatory domain of human cardiac troponin C.
    Spyracopoulos L; Li MX; Sia SK; Gagné SM; Chandra M; Solaro RJ; Sykes BD
    Biochemistry; 1997 Oct; 36(40):12138-46. PubMed ID: 9315850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiac contractility: how calcium activates the myofilaments.
    Rüegg JC
    Naturwissenschaften; 1998 Dec; 85(12):575-82. PubMed ID: 9871917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium, troponin, calmodulin, S100 proteins: from myocardial basics to new therapeutic strategies.
    Schaub MC; Heizmann CW
    Biochem Biophys Res Commun; 2008 Apr; 369(1):247-64. PubMed ID: 17964289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A recombinant monocysteine mutant (Ser to Cys-155) of fast skeletal troponin T: identification by cross-linking of a domain involved in a physiologically relevant interaction with troponins C and I.
    Jha PK; Sarkar S
    Biochemistry; 1998 Sep; 37(35):12253-60. PubMed ID: 9724539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and interaction site of the regulatory domain of troponin-C when complexed with the 96-148 region of troponin-I.
    McKay RT; Pearlstone JR; Corson DC; Gagné SM; Smillie LB; Sykes BD
    Biochemistry; 1998 Sep; 37(36):12419-30. PubMed ID: 9730814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myosin crossbridge activation of cardiac thin filaments: implications for myocardial function in health and disease.
    Moss RL; Razumova M; Fitzsimons DP
    Circ Res; 2004 May; 94(10):1290-300. PubMed ID: 15166116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Cardiovascular effects of thyroid hormones].
    Mohr-Kahaly S; Kahaly G; Meyer J
    Z Kardiol; 1996; 85 Suppl 6():219-31. PubMed ID: 9064969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Troponin: structure, properties, and mechanism of functioning.
    Filatov VL; Katrukha AG; Bulargina TV; Gusev NB
    Biochemistry (Mosc); 1999 Sep; 64(9):969-85. PubMed ID: 10521712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Contribution of cooperative mechanisms of the thin filament activation to the myocardium contractile function. Assessment by a mathematical model].
    Kantsel'son LB; Sul'man TB; Solov'eva OE; Markhasin VS
    Biofizika; 2009; 54(1):53-61. PubMed ID: 19334633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of myosin binding protein-C to myosin subfragment S2 affects contractility independent of a tether mechanism.
    Harris SP; Rostkova E; Gautel M; Moss RL
    Circ Res; 2004 Oct; 95(9):930-6. PubMed ID: 15472117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation and mutation of human cardiac troponin I deferentially destabilize the interaction of the functional regions of troponin I with troponin C.
    Li MX; Wang X; Lindhout DA; Buscemi N; Van Eyk JE; Sykes BD
    Biochemistry; 2003 Dec; 42(49):14460-8. PubMed ID: 14661957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sarcomere function and crossbridge cycling.
    ter Keurs HE
    Adv Exp Med Biol; 1995; 382():125-35. PubMed ID: 8540390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sphingosine 1-phosphate induces cell contraction via calcium-independent/Rho-dependent pathways in undifferentiated skeletal muscle cells.
    Formigli L; Meacci E; Vassalli M; Nosi D; Quercioli F; Tiribilli B; Tani A; Squecco R; Francini F; Bruni P; Zecchi Orlandini S
    J Cell Physiol; 2004 Jan; 198(1):1-11. PubMed ID: 14584038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of cardiac contractile function by troponin I phosphorylation.
    Layland J; Solaro RJ; Shah AM
    Cardiovasc Res; 2005 Apr; 66(1):12-21. PubMed ID: 15769444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.