These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 8907216)
1. Experimental and theoretical study of the contact mechanics of five total knee joint replacements. Stewart T; Jin ZM; Shaw D; Auger DD; Stone M; Fisher J Proc Inst Mech Eng H; 1995; 209(4):225-31. PubMed ID: 8907216 [TBL] [Abstract][Full Text] [Related]
2. Contact pressure prediction in total knee joint replacements. Part 2: Application to the design of total knee joint replacements. Jin ZM; Stewart T; Auger DD; Dowson D; Fisher J Proc Inst Mech Eng H; 1995; 209(1):9-15. PubMed ID: 7669123 [TBL] [Abstract][Full Text] [Related]
3. Contact pressure prediction in total knee joint replacements. Part 1: General elasticity solution for elliptical layered contacts. Jin ZM; Dowson D; Fisher J Proc Inst Mech Eng H; 1995; 209(1):1-8. PubMed ID: 7669116 [TBL] [Abstract][Full Text] [Related]
4. Elasto-plastic contact analysis of an ultra-high molecular weight polyethylene tibial component based on geometrical measurement from a retrieved knee prosthesis. Cho CH; Murakami T; Sawae Y; Sakai N; Miura H; Kawano T; Iwamoto Y Proc Inst Mech Eng H; 2004; 218(4):251-9. PubMed ID: 15376727 [TBL] [Abstract][Full Text] [Related]
5. Effect of ultra-high molecular weight polyethylene thickness on contact mechanics in total knee replacement. El-Deen M; García-Fiñana M; Jin ZM Proc Inst Mech Eng H; 2006 Oct; 220(7):733-42. PubMed ID: 17117763 [TBL] [Abstract][Full Text] [Related]
6. An axisymmetric contact model of ultra high molecular weight polyethylene cups against metallic femoral heads for artificial hip joint replacements. Jin ZM; Heng SM; Ng HW; Auger DD Proc Inst Mech Eng H; 1999; 213(4):317-27. PubMed ID: 10466363 [TBL] [Abstract][Full Text] [Related]
7. Polyethylene damage and deformation on fixed-bearing, non-conforming unicondylar knee replacements corresponding to progressive changes in alignment and fixation. Harman MK; Schmitt S; Rössing S; Banks SA; Sharf HP; Viceconti M; Hodge WA Clin Biomech (Bristol); 2010 Jul; 25(6):570-5. PubMed ID: 20457480 [TBL] [Abstract][Full Text] [Related]
8. The effect of conformity, thickness, and material on stresses in ultra-high molecular weight components for total joint replacement. Bartel DL; Bicknell VL; Wright TM J Bone Joint Surg Am; 1986 Sep; 68(7):1041-51. PubMed ID: 3745241 [TBL] [Abstract][Full Text] [Related]
9. Comparison of deformable and elastic foundation finite element simulations for predicting knee replacement mechanics. Halloran JP; Easley SK; Petrella AJ; Rullkoetter PJ J Biomech Eng; 2005 Oct; 127(5):813-8. PubMed ID: 16248311 [TBL] [Abstract][Full Text] [Related]
10. Biomechanical analysis of posterior cruciate ligament retaining high-flexion total knee arthroplasty. Zelle J; Van der Zanden AC; De Waal Malefijt M; Verdonschot N Clin Biomech (Bristol); 2009 Dec; 24(10):842-9. PubMed ID: 19733944 [TBL] [Abstract][Full Text] [Related]
11. Patellofemoral contact pressures exceed the compressive yield strength of UHMWPE in total knee arthroplasties. Takeuchi T; Lathi VK; Khan AM; Hayes WC J Arthroplasty; 1995 Jun; 10(3):363-8. PubMed ID: 7673916 [TBL] [Abstract][Full Text] [Related]
12. Customized surface-guided knee implant: Contact analysis and experimental test. Khosravipour I; Pejhan S; Luo Y; Wyss UP Proc Inst Mech Eng H; 2018 Jan; 232(1):90-100. PubMed ID: 29191076 [TBL] [Abstract][Full Text] [Related]
13. Contact stress at the anterior aspect of the tibial post in posterior-stabilized total knee replacement. Hamai S; Miura H; Matsuda S; Shimoto T; Higaki H; Iwamoto Y J Bone Joint Surg Am; 2010 Jul; 92(8):1765-73. PubMed ID: 20660240 [TBL] [Abstract][Full Text] [Related]
14. Analysis of contact mechanics for composite cushion knee joint replacements. Stewart T; Jin ZM; Fisher J Proc Inst Mech Eng H; 1998; 212(1):1-10. PubMed ID: 9529932 [TBL] [Abstract][Full Text] [Related]
15. A two-dimensional model of cyclic strain accumulation in ultra-high molecular weight polyethylene knee replacements. Reeves EA; Barton DC; FitzPatrick DP; Fisher J Proc Inst Mech Eng H; 1998; 212(3):189-98. PubMed ID: 9695638 [TBL] [Abstract][Full Text] [Related]
16. Experimental evaluation of an elastic foundation model to predict contact pressures in knee replacements. Fregly BJ; Bei Y; Sylvester ME J Biomech; 2003 Nov; 36(11):1659-68. PubMed ID: 14522207 [TBL] [Abstract][Full Text] [Related]
17. Knee joint kinematics, fixation and function related to joint area design in total knee arthroplasty. Uvehammer J Acta Orthop Scand Suppl; 2001 Feb; 72(299):1-52. PubMed ID: 11381581 [TBL] [Abstract][Full Text] [Related]
18. Computational wear prediction of a total knee replacement from in vivo kinematics. Fregly BJ; Sawyer WG; Harman MK; Banks SA J Biomech; 2005 Feb; 38(2):305-14. PubMed ID: 15598458 [TBL] [Abstract][Full Text] [Related]
19. The effect of polyethylene thickness in fixed- and mobile-bearing total knee replacements. Shi JF; Wang CJ; Berryman F; Hart W Proc Inst Mech Eng H; 2008 Jul; 222(5):657-67. PubMed ID: 18756685 [TBL] [Abstract][Full Text] [Related]
20. Average and peak contact stress distribution evaluation of total knee arthroplasties. Szivek JA; Anderson PL; Benjamin JB J Arthroplasty; 1996 Dec; 11(8):952-63. PubMed ID: 8986574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]