BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 8907645)

  • 1. Hyperthermia and paraquat-induced G1 arrest in the yeast Saccharomyces cerevisiae is independent of the RAD9 gene.
    Nunes E; Siede W
    Radiat Environ Biophys; 1996 Feb; 35(1):55-7. PubMed ID: 8907645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen peroxide causes RAD9-dependent cell cycle arrest in G2 in Saccharomyces cerevisiae whereas menadione causes G1 arrest independent of RAD9 function.
    Flattery-O'Brien JA; Dawes IW
    J Biol Chem; 1998 Apr; 273(15):8564-71. PubMed ID: 9535829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of G1 checkpoint control in the yeast Saccharomyces cerevisiae following exposure to DNA-damaging agents.
    Siede W; Friedberg AS; Dianova I; Friedberg EC
    Genetics; 1994 Oct; 138(2):271-81. PubMed ID: 7828811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RAD9-dependent G1 arrest defines a second checkpoint for damaged DNA in the cell cycle of Saccharomyces cerevisiae.
    Siede W; Friedberg AS; Friedberg EC
    Proc Natl Acad Sci U S A; 1993 Sep; 90(17):7985-9. PubMed ID: 8367452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of G2 delay by the rad9 gene of Saccharomyces cerevisiae.
    Weinert T; Hartwell L
    J Cell Sci Suppl; 1989; 12():145-8. PubMed ID: 2699734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Saccharomyces cerevisiae RAD9 cell cycle checkpoint gene is required for optimal repair of UV-induced pyrimidine dimers in both G(1) and G(2)/M phases of the cell cycle.
    Al-Moghrabi NM; Al-Sharif IS; Aboussekhra A
    Nucleic Acids Res; 2001 May; 29(10):2020-5. PubMed ID: 11353070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of RAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranslationally in cell cycle arrest after DNA damage.
    Weinert TA; Hartwell LH
    Mol Cell Biol; 1990 Dec; 10(12):6554-64. PubMed ID: 2247073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae.
    Weinert TA; Hartwell LH
    Science; 1988 Jul; 241(4863):317-22. PubMed ID: 3291120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage.
    Vialard JE; Gilbert CS; Green CM; Lowndes NF
    EMBO J; 1998 Oct; 17(19):5679-88. PubMed ID: 9755168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RAD9 and DNA polymerase epsilon form parallel sensory branches for transducing the DNA damage checkpoint signal in Saccharomyces cerevisiae.
    Navas TA; Sanchez Y; Elledge SJ
    Genes Dev; 1996 Oct; 10(20):2632-43. PubMed ID: 8895664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential regulation of two closely clustered yeast genes, MAG1 and DDI1, by cell-cycle checkpoints.
    Zhu Y; Xiao W
    Nucleic Acids Res; 1998 Dec; 26(23):5402-8. PubMed ID: 9826765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and sequence analysis of the Saccharomyces cerevisiae RAD9 gene and further evidence that its product is required for cell cycle arrest induced by DNA damage.
    Schiestl RH; Reynolds P; Prakash S; Prakash L
    Mol Cell Biol; 1989 May; 9(5):1882-96. PubMed ID: 2664461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RAD9 and RAD24 define two additive, interacting branches of the DNA damage checkpoint pathway in budding yeast normally required for Rad53 modification and activation.
    de la Torre-Ruiz MA; Green CM; Lowndes NF
    EMBO J; 1998 May; 17(9):2687-98. PubMed ID: 9564050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Saccharomyces cerevisiae DNA damage checkpoint is required for efficient repair of double strand breaks by non-homologous end joining.
    de la Torre-Ruiz M; Lowndes NF
    FEBS Lett; 2000 Feb; 467(2-3):311-5. PubMed ID: 10675560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair.
    Weinert TA; Kiser GL; Hartwell LH
    Genes Dev; 1994 Mar; 8(6):652-65. PubMed ID: 7926756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cisplatin DNA cross-links do not inhibit S-phase and cause only a G2/M arrest in Saccharomyces cerevisiae.
    Grossmann KF; Brown JC; Moses RE
    Mutat Res; 1999 May; 434(1):29-39. PubMed ID: 10377946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yeast G1 DNA damage checkpoint regulation by H2A phosphorylation is independent of chromatin remodeling.
    Javaheri A; Wysocki R; Jobin-Robitaille O; Altaf M; Côté J; Kron SJ
    Proc Natl Acad Sci U S A; 2006 Sep; 103(37):13771-6. PubMed ID: 16940359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9.
    Wysocki R; Javaheri A; Allard S; Sha F; Côté J; Kron SJ
    Mol Cell Biol; 2005 Oct; 25(19):8430-43. PubMed ID: 16166626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint.
    Weinert TA; Hartwell LH
    Genetics; 1993 May; 134(1):63-80. PubMed ID: 8514150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cdc20, a beta-transducin homologue, links RAD9-mediated G2/M checkpoint control to mitosis in Saccharomyces cerevisiae.
    Lim HH; Surana U
    Mol Gen Genet; 1996 Nov; 253(1-2):138-48. PubMed ID: 9003297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.