These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 8908725)
21. Use of aquatic organisms as models to determine the in vivo contribution of flavin-containing monooxygenases in xenobiotic biotransformation. Schlenk D Mol Mar Biol Biotechnol; 1995 Dec; 4(4):323-30. PubMed ID: 8541983 [TBL] [Abstract][Full Text] [Related]
22. Influence of diet type on the kinetic disposition of fenbendazole in cattle and buffalo. Sanyal PK; Knox MR; Singh DK; Hennessy DR; Steel JW Int J Parasitol; 1995 Oct; 25(10):1201-5. PubMed ID: 8557467 [TBL] [Abstract][Full Text] [Related]
23. Association of two single-isomer anionic CD in NACE for the chiral and achiral separation of fenbendazole, its sulphoxide and sulphone metabolites: application to their determination after in vitro metabolism. Rousseau A; Gillotin F; Chiap P; Crommen J; Fillet M; Servais AC Electrophoresis; 2010 May; 31(9):1482-7. PubMed ID: 20376816 [TBL] [Abstract][Full Text] [Related]
24. In vitro comparison of aldicarb oxidation in various food-producing animal species. Montesissa C; De Liguoro M; Amorena M; Lucisano A; Carli S Vet Hum Toxicol; 1995 Aug; 37(4):333-6. PubMed ID: 8540222 [TBL] [Abstract][Full Text] [Related]
26. Disposition of fenbendazole in cattle. Short CR; Barker SA; Hsieh LC; Ou SP; McDowell T; Davis LE; Neff-Davis CA; Koritz G; Bevill RF; Munsiff IJ Am J Vet Res; 1987 Jun; 48(6):958-61. PubMed ID: 3605812 [TBL] [Abstract][Full Text] [Related]
27. Metabolic pathways of benzimidazole anthelmintics in harebell (Campanula rotundifolia). Stuchlíková L; Jirásko R; Skálová L; Pavlík F; Szotáková B; Holčapek M; Vaněk T; Podlipná R Chemosphere; 2016 Aug; 157():10-7. PubMed ID: 27208642 [TBL] [Abstract][Full Text] [Related]
28. Drug transport mechanisms in helminth parasites: passive diffusion of benzimidazole anthelmintics. Mottier L; Alvarez L; Ceballos L; Lanusse C Exp Parasitol; 2006 May; 113(1):49-57. PubMed ID: 16430886 [TBL] [Abstract][Full Text] [Related]
29. Pharmacokinetic profile, tissue residue depletion and anthelmintic efficacy of supramolecular fenbendazole. Varlamova AI; Kotchetkov PP; Arkhipov IA; Khalikov SS; Arisov MV; Abramov VE Int J Pharm; 2021 Sep; 607():120957. PubMed ID: 34332062 [TBL] [Abstract][Full Text] [Related]
30. Assessment of the pharmacological interactions between the nematodicidal fenbendazole and the flukicidal triclabendazole: In vitro studies with bovine liver microsomes and slices. Viviani P; Lifschitz AL; Maté ML; García JP; Lanusse CE; Virkel GL J Vet Pharmacol Ther; 2018 Jun; 41(3):476-484. PubMed ID: 29465161 [TBL] [Abstract][Full Text] [Related]
31. Effects of fenbendazole and triclabendazole on the expression of cytochrome P450 1A and flavin-monooxygenase isozymes in bovine precision-cut liver slices. Maté L; Giantin M; Viviani P; Ballent M; Tolosi R; Lifschitz A; Lanusse C; Dacasto M; Virkel G Vet J; 2019 Mar; 245():61-69. PubMed ID: 30819427 [TBL] [Abstract][Full Text] [Related]
32. Fenbendazole and thiabendazole in cattle: partition of gastrointestinal absorption and pharmacokinetic behaviour. Prichard RK; Steel JW; Hennessy DR J Vet Pharmacol Ther; 1981 Dec; 4(4):295-304. PubMed ID: 7349345 [TBL] [Abstract][Full Text] [Related]
33. Influence on the antithyroid compound methimazole on the plasma disposition of fenbendazole and oxfendazole in sheep. Lanusse CE; Gascon LH; Prichard RK Res Vet Sci; 1995 May; 58(3):222-6. PubMed ID: 7659845 [TBL] [Abstract][Full Text] [Related]
34. Pharmacokinetics and metabolism of fenbendazole in channel catfish. Kitzman JV; Holley JH; Huber WG; Koritz GD; Davis LE; Neff-Davis CA; Bevill RF; Short CR; Barker SA; Hsieh LC Vet Res Commun; 1990; 14(3):217-26. PubMed ID: 2382406 [TBL] [Abstract][Full Text] [Related]
35. Effects of diet and species on the pharmacokinetics of fenbendazole in cattle. Knox MR; Steel JW Vet Res Commun; 1997 Jan; 21(1):37-43. PubMed ID: 9060141 [TBL] [Abstract][Full Text] [Related]
36. Applicability of cultured hepatocytes derived from goat, sheep and cattle in comparative drug metabolism studies. van 't Klooster GA; Woutersen-van Nijnanten FM; Blaauboer BJ; Noordhoek J; van Miert AS Xenobiotica; 1994 May; 24(5):417-28. PubMed ID: 8079501 [TBL] [Abstract][Full Text] [Related]
37. Effect of diet variations on the kinetic disposition of oxfendazole in sheep. Oukessou M; Chkounda S Int J Parasitol; 1997 Nov; 27(11):1347-51. PubMed ID: 9421722 [TBL] [Abstract][Full Text] [Related]
38. Dexamethasone decreases plasma levels of the prochiral fenbendazole and its chiral and achiral metabolites in sheep. Sánchez S; Small J; Jones DG; McKellar QA Xenobiotica; 2003 Jul; 33(7):731-42. PubMed ID: 12893522 [TBL] [Abstract][Full Text] [Related]
39. Exploring precision-cut liver slices for comparative xenobiotic metabolism profiling in swine and cattle. Ichinose P; Miró MV; Viviani P; Herrera JM; Lifschitz A; Virkel G Xenobiotica; 2024 Jun; 54(6):279-287. PubMed ID: 38626291 [TBL] [Abstract][Full Text] [Related]
40. The pharmacokinetics of fenbendazole and oxfendazole in cattle. Ngomuo AJ; Marriner SE; Bogan JA Vet Res Commun; 1984 Aug; 8(3):187-93. PubMed ID: 6495635 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]