These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 8910056)
41. Degradation of Granular Starch by the Bacterium Microbacterium aurum Strain B8.A Involves a Modular α-Amylase Enzyme System with FNIII and CBM25 Domains. Valk V; Eeuwema W; Sarian FD; van der Kaaij RM; Dijkhuizen L Appl Environ Microbiol; 2015 Oct; 81(19):6610-20. PubMed ID: 26187958 [TBL] [Abstract][Full Text] [Related]
43. Studies on the production of alkaline α-amylase from Bacillus subtilis CB-18. Nwokoro O; Anthonia O Acta Sci Pol Technol Aliment; 2015; 14(1):71-75. PubMed ID: 28068022 [TBL] [Abstract][Full Text] [Related]
44. Cloning, sequencing, and expression of the genes encoding an isocyclomaltooligosaccharide glucanotransferase and an alpha-amylase from a Bacillus circulans strain. Watanabe H; Nishimoto T; Kubota M; Chaen H; Fukuda S Biosci Biotechnol Biochem; 2006 Nov; 70(11):2690-702. PubMed ID: 17090949 [TBL] [Abstract][Full Text] [Related]
45. A thermophilic alkalophilic α-amylase from Bacillus sp. AAH-31 shows a novel domain organization among glycoside hydrolase family 13 enzymes. Saburi W; Morimoto N; Mukai A; Kim DH; Takehana T; Koike S; Matsui H; Mori H Biosci Biotechnol Biochem; 2013; 77(9):1867-73. PubMed ID: 24018662 [TBL] [Abstract][Full Text] [Related]
46. The role of two isoenzymes of alpha-amylase of Araucaria araucana (Araucariaceae) on the digestion of starch granules during germination. Waghorn JJ; del Pozo T; Acevedo EA; Cardemil LA J Exp Bot; 2003 Mar; 54(384):901-11. PubMed ID: 12598561 [TBL] [Abstract][Full Text] [Related]
47. Characterization of the starch surface binding site on Bacillus paralicheniformis α-amylase. Božić N; Rozeboom HJ; Lončar N; Slavić MŠ; Janssen DB; Vujčić Z Int J Biol Macromol; 2020 Dec; 165(Pt A):1529-1539. PubMed ID: 33058974 [TBL] [Abstract][Full Text] [Related]
49. Synthesis of supermacroporous cryogel for bioreactors continuous starch hydrolysis. Guilherme EPX; de Oliveira JP; de Carvalho LM; Brandi IV; Santos SHS; de Carvalho GGP; Cota J; Mara Aparecida de Carvalho B Electrophoresis; 2017 Nov; 38(22-23):2940-2946. PubMed ID: 28777449 [TBL] [Abstract][Full Text] [Related]
50. Raw starch-degrading α-amylase from Bacillus aquimaris MKSC 6.2: isolation and expression of the gene, bioinformatics and biochemical characterization of the recombinant enzyme. Puspasari F; Radjasa OK; Noer AS; Nurachman Z; Syah YM; van der Maarel M; Dijkhuizen L; Janeček S; Natalia D J Appl Microbiol; 2013 Jan; 114(1):108-20. PubMed ID: 23020612 [TBL] [Abstract][Full Text] [Related]
51. A thermoactive alpha-amylase from a Bacillus sp. isolated from CSMCRI salt farm. Pancha I; Jain D; Shrivastav A; Mishra SK; Shethia B; Mishra S; V P M; Jha B Int J Biol Macromol; 2010 Aug; 47(2):288-91. PubMed ID: 20417228 [TBL] [Abstract][Full Text] [Related]
52. Mixed-mode resins: taking shortcut in downstream processing of raw-starch digesting α-amylases. Lončar N; Šokarda Slavić M; Vujčić Z; Božić N Sci Rep; 2015 Oct; 5():15772. PubMed ID: 26492875 [TBL] [Abstract][Full Text] [Related]
54. Evidence that the glucoamylases and alpha-amylase secreted by Aspergillus niger are proteolytically processed products of a precursor enzyme. Dubey AK; Suresh C; Kavitha R; Karanth NG; Umesh-Kumar S FEBS Lett; 2000 Apr; 471(2-3):251-5. PubMed ID: 10767433 [TBL] [Abstract][Full Text] [Related]
55. Ball milling pretreatment facilitating α-amylase hydrolysis for production of starch-based bio-latex with high performance. Liu L; An X; Zhang H; Lu Z; Nie S; Cao H; Xu Q; Liu H Carbohydr Polym; 2020 Aug; 242():116384. PubMed ID: 32564822 [TBL] [Abstract][Full Text] [Related]
56. Performance of Granular Starch with Controlled Pore Size during Hydrolysis with Digestive Enzymes. Benavent-Gil Y; Rosell CM Plant Foods Hum Nutr; 2017 Dec; 72(4):353-359. PubMed ID: 28983746 [TBL] [Abstract][Full Text] [Related]
57. Impact of α-amylase combined with hydrochloric acid hydrolysis on structure and digestion of waxy rice starch. Li H; Zhu Y; Jiao A; Zhao J; Chen X; Wei B; Hu X; Wu C; Jin Z; Tian Y Int J Biol Macromol; 2013 Apr; 55():276-81. PubMed ID: 23357798 [TBL] [Abstract][Full Text] [Related]
58. Synergistic and antagonistic effects of α-Amylase and amyloglucosidase on starch digestion. Zhang B; Dhital S; Gidley MJ Biomacromolecules; 2013 Jun; 14(6):1945-54. PubMed ID: 23647443 [TBL] [Abstract][Full Text] [Related]
59. Immobilization of α-amylase and amyloglucosidase onto ion-exchange resin beads and hydrolysis of natural starch at high concentration. Gupta K; Jana AK; Kumar S; Maiti M Bioprocess Biosyst Eng; 2013 Nov; 36(11):1715-24. PubMed ID: 23572179 [TBL] [Abstract][Full Text] [Related]
60. Silver nanoparticles: a potential nanocatalyst for the rapid degradation of starch hydrolysis by α-amylase. Ernest V; Shiny PJ; Mukherjee A; Chandrasekaran N Carbohydr Res; 2012 May; 352():60-4. PubMed ID: 22405762 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]