These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8910059)

  • 41. Imaging of carrageenan macrocycles and amylose using noncontact atomic force microscopy.
    McIntire TM; Brant DA
    Int J Biol Macromol; 1999 Dec; 26(4):303-10. PubMed ID: 10569293
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular dynamics simulations of two double-helical hexamer fragments of iota-carrageenan in aqueous solution.
    Perez SJLP; Claudio GC
    J Mol Graph Model; 2020 Jul; 98():107588. PubMed ID: 32220758
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sol-Gel transition behavior of pure iota-carrageenan in both salt-free and added salt states.
    Hossain KS; Miyanaga K; Maeda H; Nemoto N
    Biomacromolecules; 2001; 2(2):442-9. PubMed ID: 11749204
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular structure of carrageenans and kappa oligomers: a Raman spectroscopic study.
    Malfait T; Van Dael H; Van Cauwelaert F
    Int J Biol Macromol; 1989 Oct; 11(5):259-64. PubMed ID: 2489090
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of pH and iota-carrageenan concentration on physicochemical properties and stability of beta-lactoglobulin-stabilized oil-in-water emulsions.
    Gu YS; Decker EA; McClements DJ
    J Agric Food Chem; 2004 Jun; 52(11):3626-32. PubMed ID: 15161241
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of iota-carrageenan on droplet flocculation of beta-lactoglobulin-stabilized oil-in-water emulsions during thermal processing.
    Gu YS; Decker EA; McClements DJ
    Langmuir; 2004 Oct; 20(22):9565-70. PubMed ID: 15491187
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Concentration dependence of the order-disorder transition of carrageenans. Further confirmatory evidence for the double helix in solution.
    Bryce TA; Clark AH; Rees DA; Reid DS
    Eur J Biochem; 1982 Feb; 122(1):63-9. PubMed ID: 7060569
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Formation of calcium-mediated junction zones at the onset of the sol-gel transition of commercial kappa-carrageenan solutions.
    Nickerson MT; Darvesh R; Paulson AT
    J Food Sci; 2010 Apr; 75(3):E153-6. PubMed ID: 20492288
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterisation of rheology and microstructures of κ-carrageenan in ethanol-water mixtures.
    Yang Z; Yang H; Yang H
    Food Res Int; 2018 May; 107():738-746. PubMed ID: 29580542
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synergistic effects of mixed salt on the gelation of κ-carrageenan.
    Nguyen BT; Nicolai T; Benyahia L; Chassenieux C
    Carbohydr Polym; 2014 Nov; 112():10-5. PubMed ID: 25129710
    [TBL] [Abstract][Full Text] [Related]  

  • 51. On the structure of aggregated kappa-carrageenan helices. A study by cryo-TEM, optical rotation and viscometry.
    Borgström J; Piculell L; Viebke C; Talmon Y
    Int J Biol Macromol; 1996 Apr; 18(3):223-9. PubMed ID: 8729034
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polyelectrolyte films based on polysaccharides of different conformations: effects on multilayer structure and mechanical properties.
    Schoeler B; Delorme N; Doench I; Sukhorukov GB; Fery A; Glinel K
    Biomacromolecules; 2006 Jun; 7(6):2065-71. PubMed ID: 16768435
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The structural bases of the processive degradation of iota-carrageenan, a main cell wall polysaccharide of red algae.
    Michel G; Helbert W; Kahn R; Dideberg O; Kloareg B
    J Mol Biol; 2003 Nov; 334(3):421-33. PubMed ID: 14623184
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mixed iota and kappa carrageenan gels in the presence of both calcium and potassium ions.
    Bui VTNT; Nguyen BT; Nicolai T; Renou F
    Carbohydr Polym; 2019 Nov; 223():115107. PubMed ID: 31426987
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Specific binding of trivalent metal ions to λ-carrageenan.
    Cao Y; Li S; Fang Y; Nishinari K; Phillips GO; Lerbret A; Assifaoui A
    Int J Biol Macromol; 2018 Apr; 109():350-356. PubMed ID: 29269011
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure of sodium glycodeoxycholate micellar aggregates from small-angle X-ray scattering and light-scattering techniques.
    Cozzolino S; Galantini L; Giglio E; Hoffmann S; Leggio C; Pavel NV
    J Phys Chem B; 2006 Jun; 110(25):12351-9. PubMed ID: 16800558
    [TBL] [Abstract][Full Text] [Related]  

  • 57. X-ray scattering and molecular dynamics simulations reveal the secondary structure of κ-carrageenan in the solution state.
    Westberry BP; Mansel BW; Ryan TM; Lundin L; Williams MAK
    Carbohydr Polym; 2022 Nov; 296():119958. PubMed ID: 36088000
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impact of urea on the three-dimensional structure, viscoelastic and thermal behavior of iota-carrageenan.
    Patel BK; Campanella OH; Janaswamy S
    Carbohydr Polym; 2013 Feb; 92(2):1873-9. PubMed ID: 23399231
    [TBL] [Abstract][Full Text] [Related]  

  • 59. K(+) and Na(+) effects on the gelation properties of kappa-Carrageenan.
    Mangione MR; Giacomazza D; Bulone D; Martorana V; Cavallaro G; San Biagio PL
    Biophys Chem; 2005 Feb; 113(2):129-35. PubMed ID: 15617819
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Halide ions effects on surface excess of long chain ionic liquids water solutions.
    Wang W; Sung W; Ao M; Anderson NA; Vaknin D; Kim D
    J Phys Chem B; 2013 Nov; 117(44):13884-92. PubMed ID: 24099171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.