These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 8910061)

  • 21. The role of β-sheets in the structure and assembly of keratins.
    Fraser RDB; Parry DAD
    Biophys Rev; 2009 Mar; 1(1):27. PubMed ID: 28510154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolution of hard proteins in the sauropsid integument in relation to the cornification of skin derivatives in amniotes.
    Alibardi L; Dalla Valle L; Nardi A; Toni M
    J Anat; 2009 Apr; 214(4):560-86. PubMed ID: 19422429
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immunocytochemical analysis of beta keratins in the epidermis of chelonians, lepidosaurians, and archosaurians.
    Alibardi L; Sawyer RH
    J Exp Zool; 2002 Jun; 293(1):27-38. PubMed ID: 12115916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. beta-Keratins in crocodiles reveal amino acid homology with avian keratins.
    Ye C; Wu X; Yan P; Amato G
    Mol Biol Rep; 2010 Mar; 37(3):1169-74. PubMed ID: 19266314
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sauropsids Cornification is Based on Corneous Beta-Proteins, a Special Type of Keratin-Associated Corneous Proteins of the Epidermis.
    Alibardi L
    J Exp Zool B Mol Dev Evol; 2016 Sep; 326(6):338-351. PubMed ID: 27506161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lepidosaur ß-keratin chains with four 34-residue repeats: Modelling reveals a potential filament-crosslinking role.
    Fraser RDB; Parry DAD
    J Struct Biol; 2020 Jan; 209(1):107413. PubMed ID: 31698074
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure of Keratin.
    Zhang W; Fan Y
    Methods Mol Biol; 2021; 2347():41-53. PubMed ID: 34472054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The epidermis of scales in gecko lizards contains multiple forms of beta-keratins including basic glycine-proline-serine-rich proteins.
    Toni M; Dalla Valle L; Alibardi L
    J Proteome Res; 2007 May; 6(5):1792-805. PubMed ID: 17439263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of beta-keratins and associated proteins in adult and regenerating epidermis of lizards.
    Alibardi L; Spisni E; Frassanito AG; Toni M
    Tissue Cell; 2004 Oct; 36(5):333-49. PubMed ID: 15385150
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cytochemical and molecular characteristics of the process of cornification during feather morphogenesis.
    Alibardi L; Toni M
    Prog Histochem Cytochem; 2008; 43(1):1-69. PubMed ID: 18394491
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Keratinization of sheath and calamus cells in developing and regenerating feathers.
    Alibardi L
    Ann Anat; 2007; 189(6):583-95. PubMed ID: 18078002
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Beta-keratins of differentiating epidermis of snake comprise glycine-proline-serine-rich proteins with an avian-like gene organization.
    Dalla Valle L; Nardi A; Belvedere P; Toni M; Alibardi L
    Dev Dyn; 2007 Jul; 236(7):1939-53. PubMed ID: 17576619
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Young's modulus varies with differential orientation of keratin in feathers.
    Cameron GJ; Wess TJ; Bonser RH
    J Struct Biol; 2003 Aug; 143(2):118-23. PubMed ID: 12972348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structures of the ß-Keratin Filaments and Keratin Intermediate Filaments in the Epidermal Appendages of Birds and Reptiles (Sauropsids).
    Parry DAD
    Genes (Basel); 2021 Apr; 12(4):. PubMed ID: 33920614
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic evolution of the alpha (α) and beta (β) keratins has accompanied integument diversification and the adaptation of birds into novel lifestyles.
    Greenwold MJ; Bao W; Jarvis ED; Hu H; Li C; Gilbert MT; Zhang G; Sawyer RH
    BMC Evol Biol; 2014 Dec; 14():249. PubMed ID: 25496280
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of reptilian genes encoding hair keratin-like proteins suggests a new scenario for the evolutionary origin of hair.
    Eckhart L; Dalla Valle L; Jaeger K; Ballaun C; Szabo S; Nardi A; Buchberger M; Hermann M; Alibardi L; Tschachler E
    Proc Natl Acad Sci U S A; 2008 Nov; 105(47):18419-23. PubMed ID: 19001262
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular evolution and expression of archosaurian β-keratins: diversification and expansion of archosaurian β-keratins and the origin of feather β-keratins.
    Greenwold MJ; Sawyer RH
    J Exp Zool B Mol Dev Evol; 2013 Sep; 320(6):393-405. PubMed ID: 23744807
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunolocalization of epidermal differentiation complex proteins reveals distinct molecular compositions of cells that control structure and mechanical properties of avian skin appendages.
    Alibardi L; Eckhart L
    J Morphol; 2021 Jun; 282(6):917-933. PubMed ID: 33830534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Review: Evolution and diversification of corneous beta-proteins, the characteristic epidermal proteins of reptiles and birds.
    Holthaus KB; Eckhart L; Dalla Valle L; Alibardi L
    J Exp Zool B Mol Dev Evol; 2018 Dec; 330(8):438-453. PubMed ID: 30637919
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of beta-keratins in lizard epidermis: electrophoresis, immunocytochemical and in situ-hybridization study.
    Toni M; Alibardi L
    Tissue Cell; 2007 Feb; 39(1):1-11. PubMed ID: 17101163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.