These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 8910193)

  • 1. Ca2+ mobilization and interlayer signal transfer in the heterocellular bilayered epithelium of the rabbit ciliary body.
    Schütte M; Wolosin JM
    J Physiol; 1996 Oct; 496 ( Pt 1)(Pt 1):25-37. PubMed ID: 8910193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative adrenocholinergic control of intracellular Ca2+ in the layers of the ciliary body epithelium.
    Schütte M; Diadori A; Wang C; Wolosin JM
    Invest Ophthalmol Vis Sci; 1996 Jan; 37(1):212-20. PubMed ID: 8550326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium signals from intact rabbit ciliary epithelium observed with confocal microscopy.
    Suzuki Y; Nakano T; Sears M
    Curr Eye Res; 1997 Feb; 16(2):166-75. PubMed ID: 9068948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adreno-cholinergic modulation of junctional communications between the pigmented and nonpigmented layers of the ciliary body epithelium.
    Shi XP; Zamudio AC; Candia OA; Wolosin JM
    Invest Ophthalmol Vis Sci; 1996 May; 37(6):1037-46. PubMed ID: 8631619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+ mobilization in nontransformed ciliary nonpigmented epithelial cells.
    Ohuchi T; Yoshimura N; Tanihara H; Kuriyama S; Ito S; Honda Y
    Invest Ophthalmol Vis Sci; 1992 Apr; 33(5):1696-705. PubMed ID: 1348498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel paracrine signaling mechanism in the ocular ciliary epithelium.
    Hirata K; Nathanson MH; Sears ML
    Proc Natl Acad Sci U S A; 1998 Jul; 95(14):8381-6. PubMed ID: 9653195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug-dependent Ca2+ mobilization in organ-cultured rabbit ciliary processes.
    Yoshimura N; Tanabe-Ohuchi T; Takagi H; Honda Y
    Curr Eye Res; 1995 Aug; 14(8):629-35. PubMed ID: 8529397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron microprobe analysis of ouabain-exposed ciliary epithelium: PE-NPE cell couplets form the functional units.
    McLaughlin CW; Zellhuber-McMillan S; Macknight AD; Civan MM
    Am J Physiol Cell Physiol; 2004 Jun; 286(6):C1376-89. PubMed ID: 14761890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion transport asymmetry and functional coupling in bovine pigmented and nonpigmented ciliary epithelial cells.
    Edelman JL; Sachs G; Adorante JS
    Am J Physiol; 1994 May; 266(5 Pt 1):C1210-21. PubMed ID: 8203485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular profiling and cellular localization of connexin isoforms in the rat ciliary epithelium.
    Coffey KL; Krushinsky A; Green CR; Donaldson PJ
    Exp Eye Res; 2002 Jul; 75(1):9-21. PubMed ID: 12123633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adrenergic regulation of calcium-activated potassium current in cultured rabbit pigmented ciliary epithelial cells.
    Ryan JS; Tao QP; Kelly ME
    J Physiol; 1998 Aug; 511 ( Pt 1)(Pt 1):145-57. PubMed ID: 9679170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic effect of adrenergic and muscarinic receptor activation on [Ca2+]i in rabbit ciliary body epithelium.
    Farahbakhsh NA; Cilluffo MC
    J Physiol; 1994 Jun; 477(Pt 2):215-21. PubMed ID: 7932214
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of heptanol on the short circuit currents of cornea and ciliary body demonstrates rate limiting role of heterocellular gap junctions in active ciliary body transport.
    Wolosin JM; Candia OA; Peterson-Yantorno K; Civan MM; Shi XP
    Exp Eye Res; 1997 Jun; 64(6):945-52. PubMed ID: 9301475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of gap junction coupling in bovine ciliary epithelium.
    Wang Z; Do CW; Valiunas V; Leung CT; Cheng AK; Clark AF; Wax MB; Chatterton JE; Civan MM
    Am J Physiol Cell Physiol; 2010 Apr; 298(4):C798-806. PubMed ID: 20089928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connexin distribution in the rabbit and rat ciliary body. A case for heterotypic epithelial gap junctions.
    Wolosin JM; Schütte M; Chen S
    Invest Ophthalmol Vis Sci; 1997 Feb; 38(2):341-8. PubMed ID: 9040466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Confocal imaging of Ca2+ signaling in cultured rat retinal pigment epithelial cells during mechanical and pharmacologic stimulation.
    Stalmans P; Himpens B
    Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):176-87. PubMed ID: 9008642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of NaKCl cotransport in blood-to-aqueous chloride fluxes across rabbit ciliary epithelium.
    Crook RB; Takahashi K; Mead A; Dunn JJ; Sears ML
    Invest Ophthalmol Vis Sci; 2000 Aug; 41(9):2574-83. PubMed ID: 10937569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular localization of glutamate and glutamine metabolism and transport pathways in the rat ciliary epithelium.
    Hu RG; Lim JC; Kalloniatis M; Donaldson PJ
    Invest Ophthalmol Vis Sci; 2011 May; 52(6):3345-53. PubMed ID: 21593199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connexins form functional hemichannels in porcine ciliary epithelium.
    Shahidullah M; Delamere NA
    Exp Eye Res; 2014 Jan; 118():20-9. PubMed ID: 24262135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catecholaminergic regulation of Na-K-Cl cotransport in pigmented ciliary epithelium: differences between PE and NPE.
    Hochgesand DH; Dunn JJ; Crook RB
    Exp Eye Res; 2001 Jan; 72(1):1-12. PubMed ID: 11133177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.