BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 8910298)

  • 1. Intrinsic fluorescence properties and structural analysis of p13(suc1) from Schizosaccharomyces pombe.
    Neyroz P; Menna C; Polverini E; Masotti L
    J Biol Chem; 1996 Nov; 271(44):27249-58. PubMed ID: 8910298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural role of the proline residues of the beta-hinge region of p13suc1 as revealed by site-directed mutagenesis and fluorescence studies.
    Simeoni F; Masotti L; Neyroz P
    Biochemistry; 2001 Jul; 40(27):8030-42. PubMed ID: 11434772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of the yeast cell-cycle control protein, p13suc1, in a strand-exchanged dimer.
    Khazanovich N; Bateman K; Chernaia M; Michalak M; James M
    Structure; 1996 Mar; 4(3):299-309. PubMed ID: 8805536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability and folding of the cell cycle regulatory protein, p13(suc1).
    Rousseau F; Schymkowitz JW; Sánchez del Pino M; Itzhaki LS
    J Mol Biol; 1998 Nov; 284(2):503-19. PubMed ID: 9813133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the cell cycle-regulatory protein suc1 reveals a beta-hinge conformational switch.
    Bourne Y; Arvai AS; Bernstein SL; Watson MH; Reed SI; Endicott JE; Noble ME; Johnson LN; Tainer JA
    Proc Natl Acad Sci U S A; 1995 Oct; 92(22):10232-6. PubMed ID: 7479758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. p13(SUC1) and the WW domain of PIN1 bind to the same phosphothreonine-proline epitope.
    Landrieu I; Odaert B; Wieruszeski JM; Drobecq H; Rousselot-Pailley P; Inze D; Lippens G
    J Biol Chem; 2001 Jan; 276(2):1434-8. PubMed ID: 11013245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of activated cyclosome to p13(suc1). Use for affinity purification.
    Sudakin V; Shteinberg M; Ganoth D; Hershko J; Hershko A
    J Biol Chem; 1997 Jul; 272(29):18051-9. PubMed ID: 9218435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the tryptophan fluorescence and hydrodynamic properties of rat DNA polymerase beta.
    Kim SJ; Lewis MS; Knutson JR; Porter DK; Kumar A; Wilson SH
    J Mol Biol; 1994 Nov; 244(2):224-35. PubMed ID: 7966332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motional dynamics of a buried tryptophan reveals the presence of partially structured forms during denaturation of barstar.
    Swaminathan R; Nath U; Udgaonkar JB; Periasamy N; Krishnamoorthy G
    Biochemistry; 1996 Jul; 35(28):9150-7. PubMed ID: 8703920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations at sites involved in Suc1 binding inactivate Cdc2.
    Ducommun B; Brambilla P; Draetta G
    Mol Cell Biol; 1991 Dec; 11(12):6177-84. PubMed ID: 1944283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Similarity of Spectral Profiles with Individual Fluorescence Lifetime of Tryptophan in Proteins of Different Structure].
    Nemtseva EV; Lashchuk OO; Gerasimova MA
    Biofizika; 2016; 61(2):231-8. PubMed ID: 27192823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the folding and unfolding reactions of a small beta-barrel protein of novel topology, the MTCP1 oncogene product P13.
    Roumestand C; Boyer M; Guignard L; Barthe P; Royer CA
    J Mol Biol; 2001 Sep; 312(1):247-59. PubMed ID: 11545600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cell cycle and suc1: from structure to function?
    Endicott JA; Nurse P
    Structure; 1995 Apr; 3(4):321-5. PubMed ID: 7613861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic tryptophan fluorescence of Schizosaccharomyces pombe mitochondrial F1-ATPase. A powerful probe for phosphate and nucleotide interactions.
    Divita G; Di Pietro A; Deléage G; Roux B; Gautheron DC
    Biochemistry; 1991 Apr; 30(13):3256-62. PubMed ID: 1826214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational dynamics of bovine Cu, Zn superoxide dismutase revealed by time-resolved fluorescence spectroscopy of the single tyrosine residue.
    Ferreira ST; Stella L; Gratton E
    Biophys J; 1994 Apr; 66(4):1185-96. PubMed ID: 8038390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The folding pathway of the cell-cycle regulatory protein p13suc1: clues for the mechanism of domain swapping.
    Schymkowitz JW; Rousseau F; Irvine LR; Itzhaki LS
    Structure; 2000 Jan; 8(1):89-100. PubMed ID: 10673431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An equilibrium study of the dependence of secondary and tertiary structure of creatine kinase on subunit association.
    Grossman SH
    Biochim Biophys Acta; 1994 Nov; 1209(1):19-23. PubMed ID: 7947978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution NMR study of the monomeric form of p13suc1 protein sheds light on the hinge region determining the affinity for a phosphorylated substrate.
    Odaert B; Landrieu I; Dijkstra K; Schuurman-Wolters G; Casteels P; Wieruszeski JM; Inze D; Scheek R; Lippens G
    J Biol Chem; 2002 Apr; 277(14):12375-81. PubMed ID: 11812792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitosis-specific phosphorylation of gar2, a fission yeast nucleolar protein structurally related to nucleolin.
    Gulli MP; Faubladier M; Sicard H; Caizergues-Ferrer M
    Chromosoma; 1997 Jun; 105(7-8):532-41. PubMed ID: 9211981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of intermediate protein conformations by room temperature tryptophan phosphorescence spectroscopy during denaturation of Escherichia coli alkaline phosphatase.
    Mersol JV; Steel DG; Gafni A
    Biophys Chem; 1993 Dec; 48(2):281-91. PubMed ID: 8298060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.