BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 8910303)

  • 1. Protein import into subsarcolemmal and intermyofibrillar skeletal muscle mitochondria. Differential import regulation in distinct subcellular regions.
    Takahashi M; Hood DA
    J Biol Chem; 1996 Nov; 271(44):27285-91. PubMed ID: 8910303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contractile activity-induced adaptations in the mitochondrial protein import system.
    Takahashi M; Chesley A; Freyssenet D; Hood DA
    Am J Physiol; 1998 May; 274(5):C1380-7. PubMed ID: 9612226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential susceptibility of subsarcolemmal and intermyofibrillar mitochondria to apoptotic stimuli.
    Adhihetty PJ; Ljubicic V; Menzies KJ; Hood DA
    Am J Physiol Cell Physiol; 2005 Oct; 289(4):C994-C1001. PubMed ID: 15901602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasma Amino Acids Stimulate Uncoupled Respiration of Muscle Subsarcolemmal Mitochondria in Lean but Not Obese Humans.
    Kras KA; Hoffman N; Roust LR; Patel SH; Carroll CC; Katsanos CS
    J Clin Endocrinol Metab; 2017 Dec; 102(12):4515-4525. PubMed ID: 29029131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negligible direct lactate oxidation in subsarcolemmal and intermyofibrillar mitochondria obtained from red and white rat skeletal muscle.
    Yoshida Y; Holloway GP; Ljubicic V; Hatta H; Spriet LL; Hood DA; Bonen A
    J Physiol; 2007 Aug; 582(Pt 3):1317-35. PubMed ID: 17556391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subsarcolemmal and intermyofibrillar mitochondria proteome differences disclose functional specializations in skeletal muscle.
    Ferreira R; Vitorino R; Alves RM; Appell HJ; Powers SK; Duarte JA; Amado F
    Proteomics; 2010 Sep; 10(17):3142-54. PubMed ID: 20665633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of aging on protein import into cardiac mitochondria.
    Craig EE; Hood DA
    Am J Physiol; 1997 Jun; 272(6 Pt 2):H2983-8. PubMed ID: 9227577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of chronic contractile activity on SS and IMF mitochondrial apoptotic susceptibility in skeletal muscle.
    Adhihetty PJ; Ljubicic V; Hood DA
    Am J Physiol Endocrinol Metab; 2007 Mar; 292(3):E748-55. PubMed ID: 17106065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of skeletal muscle mitochondria isolated from subsarcolemmal and intermyofibrillar regions.
    Cogswell AM; Stevens RJ; Hood DA
    Am J Physiol; 1993 Feb; 264(2 Pt 1):C383-9. PubMed ID: 8383431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of contractile activity on protein turnover in skeletal muscle mitochondrial subfractions.
    Connor MK; Bezborodova O; Escobar CP; Hood DA
    J Appl Physiol (1985); 2000 May; 88(5):1601-6. PubMed ID: 10797119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subsarcolemmal and intermyofibrillar mitochondria play distinct roles in regulating skeletal muscle fatty acid metabolism.
    Koves TR; Noland RC; Bates AL; Henes ST; Muoio DM; Cortright RN
    Am J Physiol Cell Physiol; 2005 May; 288(5):C1074-82. PubMed ID: 15647392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential responses to endurance training in subsarcolemmal and intermyofibrillar mitochondria.
    Bizeau ME; Willis WT; Hazel JR
    J Appl Physiol (1985); 1998 Oct; 85(4):1279-84. PubMed ID: 9760317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Obesity modifies the stoichiometry of mitochondrial proteins in a way that is distinct to the subcellular localization of the mitochondria in skeletal muscle.
    Kras KA; Langlais PR; Hoffman N; Roust LR; Benjamin TR; De Filippis EA; Dinu V; Katsanos CS
    Metabolism; 2018 Dec; 89():18-26. PubMed ID: 30253140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SIRT1 overexpression in skeletal muscle in vivo induces increased insulin sensitivity and enhanced complex I but not complex II-V functions in individual subsarcolemmal and intermyofibrillar mitochondria.
    Zhang HH; Qin GJ; Li XL; Zhang YH; Du PJ; Zhang PY; Zhao YY; Wu J
    J Physiol Biochem; 2015 Jun; 71(2):177-90. PubMed ID: 25782776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of 4 wk of hindlimb suspension on skeletal muscle mitochondrial respiration in rats.
    Yajid F; Mercier JG; Mercier BM; Dubouchaud H; Préfaut C
    J Appl Physiol (1985); 1998 Feb; 84(2):479-85. PubMed ID: 9475856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monocarboxylate transporters in subsarcolemmal and intermyofibrillar mitochondria.
    Benton CR; Campbell SE; Tonouchi M; Hatta H; Bonen A
    Biochem Biophys Res Commun; 2004 Oct; 323(1):249-53. PubMed ID: 15351729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of UCP3 in state 4 respiration during contractile activity-induced mitochondrial biogenesis.
    Ljubicic V; Adhihetty PJ; Hood DA
    J Appl Physiol (1985); 2004 Sep; 97(3):976-83. PubMed ID: 15145919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of p53 on mitochondrial morphology, import, and assembly in skeletal muscle.
    Saleem A; Iqbal S; Zhang Y; Hood DA
    Am J Physiol Cell Physiol; 2015 Feb; 308(4):C319-29. PubMed ID: 25472962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thyroid hormone modifies mitochondrial phenotype by increasing protein import without altering degradation.
    Craig EE; Chesley A; Hood DA
    Am J Physiol; 1998 Dec; 275(6):C1508-15. PubMed ID: 9843712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of CPT I activity in intermyofibrillar and subsarcolemmal mitochondria from human and rat skeletal muscle.
    Bezaire V; Heigenhauser GJ; Spriet LL
    Am J Physiol Endocrinol Metab; 2004 Jan; 286(1):E85-91. PubMed ID: 12954596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.