These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 8910391)

  • 41. Interaction of one-chain and two-chain tissue plasminogen activator with intact and plasmin-degraded fibrin.
    Higgins DL; Vehar GA
    Biochemistry; 1987 Dec; 26(24):7786-91. PubMed ID: 2962641
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of the interactions of plasminogen and tissue and vampire bat plasminogen activators with fibrinogen, fibrin, and the complex of D-dimer noncovalently linked to fragment E.
    Stewart RJ; Fredenburgh JC; Weitz JI
    J Biol Chem; 1998 Jul; 273(29):18292-9. PubMed ID: 9660794
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Differential effects of staphylokinase, streptokinase and tissue-type plasminogen activator on the lysis of retracted human plasma clots and fibrinolytic plasma parameters in vitro.
    Hauptmann J; Glusa E
    Blood Coagul Fibrinolysis; 1995 Sep; 6(6):579-83. PubMed ID: 7578902
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Plasminogen binding by alpha 2-antiplasmin and histidine-rich glycoprotein does not inhibit plasminogen activation at the surface of fibrin.
    Angles-Cano E; Rouy D; Lijnen HR
    Biochim Biophys Acta; 1992 Dec; 1156(1):34-42. PubMed ID: 1472536
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Analysis of plasmin generation and clot lysis of plasma fibrinogen purified from a heterozygous dysfibrinogenemia, BbetaGly15Cys (Hamamatsu II).
    Kamijyo Y; Hirota-Kawadobora M; Yamauchi K; Terasawa F; Honda T; Ikeya M; Okumura N
    Blood Coagul Fibrinolysis; 2009 Dec; 20(8):726-32. PubMed ID: 19809304
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The role of activated coagulation factor XII in overall clot stability and fibrinolysis.
    Konings J; Hoving LR; Ariëns RS; Hethershaw EL; Ninivaggi M; Hardy LJ; de Laat B; Ten Cate H; Philippou H; Govers-Riemslag JW
    Thromb Res; 2015 Aug; 136(2):474-80. PubMed ID: 26153047
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regulation of nonproteolytic active site formation in plasminogen.
    Gladysheva IP; Sazonova IY; Houng A; Hedstrom L; Reed GL
    Biochemistry; 2007 Jul; 46(30):8879-87. PubMed ID: 17616171
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of a recombinant chimeric plasminogen activator with enhanced fibrin binding.
    Jiao J; Yu M; Ru B
    Biochim Biophys Acta; 2001 Apr; 1546(2):399-405. PubMed ID: 11295444
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recombinant human C1-inhibitor prevents non-specific proteolysis by mutant pro-urokinase during optimal fibrinolysis.
    Gurewich V; Pannell R
    Thromb Haemost; 2009 Aug; 102(2):279-86. PubMed ID: 19652878
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Clot lysis induced by a monoclonal antibody against alpha 2-plasmin inhibitor.
    Sakata Y; Eguchi Y; Mimuro J; Matsuda M; Sumi Y
    Blood; 1989 Dec; 74(8):2692-7. PubMed ID: 2510836
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sequence of formation of molecular forms of plasminogen and plasmin-inhibitor complexes in plasma activated by urokinase or tissue-type plasminogen activator.
    Thorsen S; Müllertz S; Suenson E; Kok P
    Biochem J; 1984 Oct; 223(1):179-87. PubMed ID: 6208894
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An analysis of mechanisms underlying the antifibrinolytic properties of radiographic contrast agents.
    Farrehi PM; Zhu Y; Fay WP
    J Thromb Thrombolysis; 2001 Dec; 12(3):273-81. PubMed ID: 11981110
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular mechanisms of fibrinolysis and their application to fibrin-specific thrombolytic therapy.
    Collen D
    J Cell Biochem; 1987 Feb; 33(2):77-86. PubMed ID: 3553213
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polyphosphate modifies the fibrin network and down-regulates fibrinolysis by attenuating binding of tPA and plasminogen to fibrin.
    Mutch NJ; Engel R; Uitte de Willige S; Philippou H; Ariëns RA
    Blood; 2010 May; 115(19):3980-8. PubMed ID: 20228273
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanism of action and thrombolytic potential of staphylokinase.
    Lijnen HR
    Verh K Acad Geneeskd Belg; 1995; 57(4):303-14. PubMed ID: 8571666
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tissue-type plasminogen activator and its substrate Glu-plasminogen share common binding sites in limited plasmin-digested fibrin.
    de Vries C; Veerman H; Koornneef E; Pannekoek H
    J Biol Chem; 1990 Aug; 265(23):13547-52. PubMed ID: 2143185
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A fast-acting, modular-structured staphylokinase fusion with Kringle-1 from human plasminogen as the fibrin-targeting domain offers improved clot lysis efficacy.
    Wu SC; Castellino FJ; Wong SL
    J Biol Chem; 2003 May; 278(20):18199-206. PubMed ID: 12646571
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Basic principles in thrombolysis: regulatory role of plasminogen.
    Rijken DC; Sakharov DV
    Thromb Res; 2001 Sep; 103 Suppl 1():S41-9. PubMed ID: 11567668
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Streptokinase binds to human plasmin with high affinity, perturbs the plasmin active site, and induces expression of a substrate recognition exosite for plasminogen.
    Boxrud PD; Fay WP; Bock PE
    J Biol Chem; 2000 May; 275(19):14579-89. PubMed ID: 10799544
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An experimental and theoretical study on the dissolution of mural fibrin clots by tissue-type plasminogen activator.
    Wootton DM; Popel AS; Alevriadou BR
    Biotechnol Bioeng; 2002 Feb; 77(4):405-19. PubMed ID: 11787013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.