These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 8910402)
1. Regulation of dynamin I GTPase activity by G protein betagamma subunits and phosphatidylinositol 4,5-bisphosphate. Lin HC; Gilman AG J Biol Chem; 1996 Nov; 271(45):27979-82. PubMed ID: 8910402 [TBL] [Abstract][Full Text] [Related]
2. Phosphatidylinositol (4,5)-bisphosphate-dependent activation of dynamins I and II lacking the proline/arginine-rich domains. Lin HC; Barylko B; Achiriloaie M; Albanesi JP J Biol Chem; 1997 Oct; 272(41):25999-6004. PubMed ID: 9325335 [TBL] [Abstract][Full Text] [Related]
3. Dominant-negative inhibition of receptor-mediated endocytosis by a dynamin-1 mutant with a defective pleckstrin homology domain. Lee A; Frank DW; Marks MS; Lemmon MA Curr Biol; 1999 Mar; 9(5):261-4. PubMed ID: 10074457 [TBL] [Abstract][Full Text] [Related]
4. Phosphatidylinositol 4,5-bisphosphate stimulates vesicle formation from liposomes by brain cytosol. Kinuta M; Yamada H; Abe T; Watanabe M; Li SA; Kamitani A; Yasuda T; Matsukawa T; Kumon H; Takei K Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2842-7. PubMed ID: 11867768 [TBL] [Abstract][Full Text] [Related]
5. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Stowell MH; Marks B; Wigge P; McMahon HT Nat Cell Biol; 1999 May; 1(1):27-32. PubMed ID: 10559860 [TBL] [Abstract][Full Text] [Related]
6. Molecular interactions between dynamin and G-protein betagamma-subunits in neuroendocrine cells. Liu JP; Yajima Y; Li H; Ackland S; Akita Y; Stewart J; Kawashima S Mol Cell Endocrinol; 1997 Sep; 132(1-2):61-71. PubMed ID: 9324047 [TBL] [Abstract][Full Text] [Related]
7. Activation of dynamin GTPase by acidic phospholipids and endogenous rat brain vesicles. Tuma PL; Stachniak MC; Collins CA J Biol Chem; 1993 Aug; 268(23):17240-6. PubMed ID: 8349610 [TBL] [Abstract][Full Text] [Related]
8. Synergistic activation of dynamin GTPase by Grb2 and phosphoinositides. Barylko B; Binns D; Lin KM; Atkinson MA; Jameson DM; Yin HL; Albanesi JP J Biol Chem; 1998 Feb; 273(6):3791-7. PubMed ID: 9452513 [TBL] [Abstract][Full Text] [Related]
9. Identification of the binding site for acidic phospholipids on the pH domain of dynamin: implications for stimulation of GTPase activity. Zheng J; Cahill SM; Lemmon MA; Fushman D; Schlessinger J; Cowburn D J Mol Biol; 1996 Jan; 255(1):14-21. PubMed ID: 8568861 [TBL] [Abstract][Full Text] [Related]
13. Activation of dynamin GTPase is a result of positive cooperativity. Tuma PL; Collins CA J Biol Chem; 1994 Dec; 269(49):30842-7. PubMed ID: 7983015 [TBL] [Abstract][Full Text] [Related]
14. Essential role of the dynamin pleckstrin homology domain in receptor-mediated endocytosis. Achiriloaie M; Barylko B; Albanesi JP Mol Cell Biol; 1999 Feb; 19(2):1410-5. PubMed ID: 9891074 [TBL] [Abstract][Full Text] [Related]
15. Phosphorylation of dynamin I and synaptic-vesicle recycling. Robinson PJ; Liu JP; Powell KA; Fykse EM; Südhof TC Trends Neurosci; 1994 Aug; 17(8):348-53. PubMed ID: 7526507 [TBL] [Abstract][Full Text] [Related]
16. Stimulation of dynamin GTPase activity by amphiphysin. Yoshida Y; Takei K Methods Enzymol; 2005; 404():528-37. PubMed ID: 16413297 [TBL] [Abstract][Full Text] [Related]
17. Ubiquitously expressed dynamin-II has a higher intrinsic GTPase activity and a greater propensity for self-assembly than neuronal dynamin-I. Warnock DE; Baba T; Schmid SL Mol Biol Cell; 1997 Dec; 8(12):2553-62. PubMed ID: 9398675 [TBL] [Abstract][Full Text] [Related]