BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 8910414)

  • 21. Product release during the first turnover of the ATP sulfurylase-GTPase.
    Sukal S; Leyh TS
    Biochemistry; 2001 Dec; 40(49):15009-16. PubMed ID: 11732922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 31P NMR of enzyme-bound substrates of rabbit muscle creatine kinase. Equilibrium constants, interconversion rates, and NMR parameters of enzyme-bound complexes.
    Nageswara Rao BD; Cohn M
    J Biol Chem; 1981 Feb; 256(4):1716-21. PubMed ID: 7462219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purification and characterization of guanylate kinase, a nucleoside monophosphate kinase of Brugia malayi.
    Gupta S; Yadav S; Singh N; Verma A; Siddiqi I; Saxena JK
    Parasitology; 2014 Sep; 141(10):1341-52. PubMed ID: 25061727
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pyrimidine nucleoside monophosphate kinase from rat bone marrow cells: a kinetic analysis of the reaction mechanism.
    Seagrave J; Reyes P
    Arch Biochem Biophys; 1987 May; 254(2):518-25. PubMed ID: 3034164
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of a partially rate-determining step in the catalytic mechanism of cAMP-dependent protein kinase: a transient kinetic study using stopped-flow fluorescence spectroscopy.
    Lew J; Taylor SS; Adams JA
    Biochemistry; 1997 Jun; 36(22):6717-24. PubMed ID: 9184152
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Large-scale production of the immunomodulator c-di-GMP from GMP and ATP by an enzymatic cascade.
    Spehr V; Warrass R; Höcherl K; Ilg T
    Appl Biochem Biotechnol; 2011 Oct; 165(3-4):761-75. PubMed ID: 21710212
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of an HPLC-based guanosine monophosphate kinase assay and application to Plasmodium vivax guanylate kinase.
    Pedro L; Cross M; Hofmann A; Mak T; Quinn RJ
    Anal Biochem; 2019 Jun; 575():63-69. PubMed ID: 30943378
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 31P NMR studies of the arginine kinase reaction. Equilibrium constants and exchange rates at stoichiometric enzyme concentration.
    Rao BD; Buttlaire DH; Cohn M
    J Biol Chem; 1976 Nov; 251(22):6981-6. PubMed ID: 186451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic studies of rat liver hexokinase D ('glucokinase') in non-co-operative conditions show an ordered mechanism with MgADP as the last product to be released.
    Monasterio O; Cárdenas ML
    Biochem J; 2003 Apr; 371(Pt 1):29-38. PubMed ID: 12513690
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphorylation of the antiviral precursor 9-(1,3-dihydroxy-2-propoxymethyl)guanine monophosphate by guanylate kinase isozymes.
    Boehme RE
    J Biol Chem; 1984 Oct; 259(20):12346-9. PubMed ID: 6092331
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nucleotide binding by the synapse associated protein SAP90.
    Kistner U; Garner CC; Linial M
    FEBS Lett; 1995 Feb; 359(2-3):159-63. PubMed ID: 7867790
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional analysis of the nucleotide binding domain of membrane-associated guanylate kinases.
    Olsen O; Bredt DS
    J Biol Chem; 2003 Feb; 278(9):6873-8. PubMed ID: 12482754
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic mechanism of the type II calmodulin-dependent protein kinase: studies of the forward and reverse reactions and observation of apparent rapid-equilibrium ordered binding.
    Kwiatkowski AP; Huang CY; King MM
    Biochemistry; 1990 Jan; 29(1):153-9. PubMed ID: 2157478
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stability constants of Mg2+ and Cd2+ complexes of adenine nucleotides and thionucleotides and rate constants for formation and dissociation of MgATP and MgADP.
    Pecoraro VL; Hermes JD; Cleland WW
    Biochemistry; 1984 Oct; 23(22):5262-71. PubMed ID: 6334536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphate and thiophosphate group donating adenine and guanine nucleotides inhibit glibenclamide binding to membranes from pancreatic islets.
    Schwanstecher M; Löser S; Rietze I; Panten U
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Jan; 343(1):83-9. PubMed ID: 1903188
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural characterization of the closed conformation of mouse guanylate kinase.
    Sekulic N; Shuvalova L; Spangenberg O; Konrad M; Lavie A
    J Biol Chem; 2002 Aug; 277(33):30236-43. PubMed ID: 12036965
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Refined structure of the complex between guanylate kinase and its substrate GMP at 2.0 A resolution.
    Stehle T; Schulz GE
    J Mol Biol; 1992 Apr; 224(4):1127-41. PubMed ID: 1314905
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Substrate synergism and the kinetic mechanism of yeast hexokinase.
    Viola RE; Raushel FM; Rendina AR; Cleland WW
    Biochemistry; 1982 Mar; 21(6):1295-302. PubMed ID: 7041974
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mechanism and modes of inhibition of arginine kinase from the cockroach (Periplaneta americana).
    Brown AE; Grossman SH
    Arch Insect Biochem Physiol; 2004 Dec; 57(4):166-77. PubMed ID: 15540275
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic studies on the two common inherited forms of human erythrocyte adenylate kinase.
    Brownson C; Spencer N
    Biochem J; 1972 Dec; 130(3):805-11. PubMed ID: 4664935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.