These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 8910528)

  • 21. Methionine Metabolism Alters Oxidative Stress Resistance via the Pentose Phosphate Pathway.
    Campbell K; Vowinckel J; Keller MA; Ralser M
    Antioxid Redox Signal; 2016 Apr; 24(10):543-7. PubMed ID: 26596469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Yeast and mammalian metallothioneins functionally substitute for yeast copper-zinc superoxide dismutase.
    Tamai KT; Gralla EB; Ellerby LM; Valentine JS; Thiele DJ
    Proc Natl Acad Sci U S A; 1993 Sep; 90(17):8013-7. PubMed ID: 8367458
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage.
    Sturtz LA; Diekert K; Jensen LT; Lill R; Culotta VC
    J Biol Chem; 2001 Oct; 276(41):38084-9. PubMed ID: 11500508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The cytoplasmic Cu,Zn superoxide dismutase of saccharomyces cerevisiae is required for resistance to freeze-thaw stress. Generation of free radicals during freezing and thawing.
    Park JI; Grant CM; Davies MJ; Dawes IW
    J Biol Chem; 1998 Sep; 273(36):22921-8. PubMed ID: 9722512
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redirection of the Glycolytic Flux Enhances Isoprenoid Production in Saccharomyces cerevisiae.
    Kwak S; Yun EJ; Lane S; Oh EJ; Kim KH; Jin YS
    Biotechnol J; 2020 Feb; 15(2):e1900173. PubMed ID: 31466140
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering.
    Culotta VC; Joh HD; Lin SJ; Slekar KH; Strain J
    J Biol Chem; 1995 Dec; 270(50):29991-7. PubMed ID: 8530401
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Saccharomyces cerevisiae LYS7 gene is involved in oxidative stress protection.
    Gamonet F; Lauquin GJ
    Eur J Biochem; 1998 Feb; 251(3):716-23. PubMed ID: 9490044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deletion of PHO13, encoding haloacid dehalogenase type IIA phosphatase, results in upregulation of the pentose phosphate pathway in Saccharomyces cerevisiae.
    Kim SR; Xu H; Lesmana A; Kuzmanovic U; Au M; Florencia C; Oh EJ; Zhang G; Kim KH; Jin YS
    Appl Environ Microbiol; 2015 Mar; 81(5):1601-9. PubMed ID: 25527558
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Copper/zinc-Superoxide dismutase is required for oxytetracycline resistance of Saccharomyces cerevisiae.
    Avery SV; Malkapuram S; Mateus C; Babb KS
    J Bacteriol; 2000 Jan; 182(1):76-80. PubMed ID: 10613865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prokaryotic iron superoxide dismutase replaces cytosolic copper, zinc superoxide dismutase in protecting yeast cells against oxidative stress.
    Agius DR; Bannister WH; Balzan R
    Biochem Mol Biol Int; 1998 Jan; 44(1):41-9. PubMed ID: 9503146
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Requirement of glutathione for Sod1 activation during lifespan extension.
    Mannarino SC; Vilela LF; Brasil AA; Aranha JN; Moradas-Ferreira P; Pereira MD; Costa V; Eleutherio EC
    Yeast; 2011 Jan; 28(1):19-25. PubMed ID: 20737429
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation.
    Hector RE; Mertens JA; Bowman MJ; Nichols NN; Cotta MA; Hughes SR
    Yeast; 2011 Sep; 28(9):645-60. PubMed ID: 21809385
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sod1 integrates oxygen availability to redox regulate NADPH production and the thiol redoxome.
    Montllor-Albalate C; Kim H; Thompson AE; Jonke AP; Torres MP; Reddi AR
    Proc Natl Acad Sci U S A; 2022 Jan; 119(1):. PubMed ID: 34969852
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insights into the role of the unusual disulfide bond in copper-zinc superoxide dismutase.
    Sea K; Sohn SH; Durazo A; Sheng Y; Shaw BF; Cao X; Taylor AB; Whitson LJ; Holloway SP; Hart PJ; Cabelli DE; Gralla EB; Valentine JS
    J Biol Chem; 2015 Jan; 290(4):2405-18. PubMed ID: 25433341
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase.
    Nogae I; Johnston M
    Gene; 1990 Dec; 96(2):161-9. PubMed ID: 2269430
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Yeast lacking Cu-Zn superoxide dismutase show altered iron homeostasis. Role of oxidative stress in iron metabolism.
    De Freitas JM; Liba A; Meneghini R; Valentine JS; Gralla EB
    J Biol Chem; 2000 Apr; 275(16):11645-9. PubMed ID: 10766782
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exogenous manganous ion at millimolar levels rescues all known dioxygen-sensitive phenotypes of yeast lacking CuZnSOD.
    Sanchez RJ; Srinivasan C; Munroe WH; Wallace MA; Martins J; Kao TY; Le K; Gralla EB; Valentine JS
    J Biol Inorg Chem; 2005 Dec; 10(8):913-23. PubMed ID: 16283393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glucose utilization of strains lacking PGI1 and expressing a transhydrogenase suggests differences in the pentose phosphate capacity among Saccharomyces cerevisiae strains.
    Heux S; Cadiere A; Dequin S
    FEMS Yeast Res; 2008 Mar; 8(2):217-24. PubMed ID: 18036177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The overlapping roles of manganese and Cu/Zn SOD in oxidative stress protection.
    Reddi AR; Jensen LT; Naranuntarat A; Rosenfeld L; Leung E; Shah R; Culotta VC
    Free Radic Biol Med; 2009 Jan; 46(2):154-62. PubMed ID: 18973803
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increasing pentose phosphate pathway flux enhances recombinant protein production in Pichia pastoris.
    Nocon J; Steiger M; Mairinger T; Hohlweg J; Rußmayer H; Hann S; Gasser B; Mattanovich D
    Appl Microbiol Biotechnol; 2016 Jul; 100(13):5955-63. PubMed ID: 27020289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.