These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 8910542)
1. Identification of arginyl residues located at the ATP binding site of sarcoplasmic reticulum Ca2+-ATPase. Modification with 1,2-cyclohexanedione. Kimura K; Suzuki H; Daiho T; Yamasaki K; Kanazawa T J Biol Chem; 1996 Nov; 271(46):28933-41. PubMed ID: 8910542 [TBL] [Abstract][Full Text] [Related]
2. Modification of arginine-198 in sarcoplasmic reticulum Ca2+-ATPase by 1,2-cyclohexanedione causes inhibition of formation of the phosphoenzyme intermediate from inorganic phosphate. Saino T; Daiho T; Kanazawa T J Biol Chem; 1997 Aug; 272(34):21142-50. PubMed ID: 9261119 [TBL] [Abstract][Full Text] [Related]
3. Labeling of lysine 492 with pyridoxal 5'-phosphate in the sarcoplasmic reticulum Ca(2+)-ATPase. Lysine 492 residue is located outside the fluorescein 5-isothiocyanate-binding region in or near the ATP binding site. Yamagata K; Daiho T; Kanazawa T J Biol Chem; 1993 Oct; 268(28):20930-6. PubMed ID: 8407928 [TBL] [Abstract][Full Text] [Related]
4. Involvement of an arginyl residue in the nucleotide-binding site of Ca(2+)-ATPase from sarcoplasmic reticulum as seen by reaction with phenylglyoxal. Corbalán-García S; Teruel JA; Gómez-Fernández JC Biochem J; 1996 Aug; 318 ( Pt 1)(Pt 1):179-85. PubMed ID: 8761469 [TBL] [Abstract][Full Text] [Related]
5. 3'-O-(5-fluoro-2,4-dinitrophenyl)-ATP exclusively labels Lys-492 at the active site of the sarcoplasmic reticulum Ca(2+)-ATPase. Yamasaki K; Daiho T; Kanazawa T J Biol Chem; 1994 Feb; 269(6):4129-34. PubMed ID: 8307973 [TBL] [Abstract][Full Text] [Related]
6. Mutagenesis of segment 487Phe-Ser-Arg-Asp-Arg-Lys492 of sarcoplasmic reticulum Ca2+-ATPase produces pumps defective in ATP binding. McIntosh DB; Woolley DG; Vilsen B; Andersen JP J Biol Chem; 1996 Oct; 271(42):25778-89. PubMed ID: 8824206 [TBL] [Abstract][Full Text] [Related]
7. Chemical modification of an arginine residue in the ATP-binding site of Ca2+ -transporting ATPase of sarcoplasmic reticulum by phenylglyoxal. Yamamoto H; Kawakita M Mol Cell Biochem; 1999 Jan; 190(1-2):169-77. PubMed ID: 10098984 [TBL] [Abstract][Full Text] [Related]
8. Stoichiometry of phosphorylation to fluorescein 5-isothiocyanate binding in the Ca2+-ATPase of sarcoplasmic reticulum vesicles. Nakamura S; Suzuki H; Kanazawa T J Biol Chem; 1997 Mar; 272(10):6232-7. PubMed ID: 9045639 [TBL] [Abstract][Full Text] [Related]
9. 2',3'-O-(2,4,6-trinitrophenyl)-8-azido-AMP and -ATP photolabel Lys-492 at the active site of sarcoplasmic reticulum Ca(2+)-ATPase. McIntosh DB; Woolley DG; Berman MC J Biol Chem; 1992 Mar; 267(8):5301-9. PubMed ID: 1476544 [TBL] [Abstract][Full Text] [Related]
10. Ca2(+)-dependent conformational change of the ATP-binding site of Ca2(+)-transporting ATPase of sarcoplasmic reticulum as revealed by an alteration of the target-site specificity of adenosine triphosphopyridoxal. Yamamoto H; Imamura Y; Tagaya M; Fukui T; Kawakita M J Biochem; 1989 Dec; 106(6):1121-5. PubMed ID: 2534125 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of inhibition of sarcoplasmic reticulum Ca2(+)-ATPase by active site cross-linking. Impairment of nucleotide binding slows nucleotide-dependent phosphoryl transfer, and loss of active site flexibility stabilizes occluded forms and blocks E2-P formation. Ross DC; Davidson GA; McIntosh DB J Biol Chem; 1991 Mar; 266(7):4613-21. PubMed ID: 1825656 [TBL] [Abstract][Full Text] [Related]
12. Affinity labeling of the ATP-binding site of Ca2+-transporting ATPase of sarcoplasmic reticulum by adenosine triphosphopyridoxal: identification of the reactive lysyl residue. Yamamoto H; Tagaya M; Fukui T; Kawakita M J Biochem; 1988 Mar; 103(3):452-7. PubMed ID: 2968978 [TBL] [Abstract][Full Text] [Related]
13. Reduction of disulfide bonds in sarcoplasmic reticulum Ca(2+)-ATPase by dithiothreitol causes inhibition of phosphoenzyme isomerization in catalytic cycle. This reduction requires binding of both purine nucleotide and Ca2+ to enzyme. Daiho T; Kanazawa T J Biol Chem; 1994 Apr; 269(15):11060-4. PubMed ID: 8157632 [TBL] [Abstract][Full Text] [Related]
14. Intramolecular cross-linking of domains at the active site links A1 and B subfragments of the Ca2+-ATPase of sarcoplasmic reticulum. Ross DC; McIntosh DB J Biol Chem; 1987 Feb; 262(5):2042-9. PubMed ID: 2950084 [TBL] [Abstract][Full Text] [Related]
15. Inhibition and labeling of the Ca2(+)-ATPase from sarcoplasmic reticulum by periodate oxidized ATP. Mignaco J; Scofano HM; Barrabin H Biochim Biophys Acta; 1990 Jul; 1039(3):305-12. PubMed ID: 2143085 [TBL] [Abstract][Full Text] [Related]
16. Functional consequences of alterations to amino acids located in the hinge domain of the Ca(2+)-ATPase of sarcoplasmic reticulum. Vilsen B; Andersen JP; MacLennan DH J Biol Chem; 1991 Aug; 266(24):16157-64. PubMed ID: 1831454 [TBL] [Abstract][Full Text] [Related]
17. ATP regulation of sarcoplasmic reticulum Ca2+-ATPase. Metal-free ATP and 8-bromo-ATP bind with high affinity to the catalytic site of phosphorylated ATPase and accelerate dephosphorylation. Champeil P; Riollet S; Orlowski S; Guillain F; Seebregts CJ; McIntosh DB J Biol Chem; 1988 Sep; 263(25):12288-94. PubMed ID: 2970458 [TBL] [Abstract][Full Text] [Related]
18. Mutations of either or both Cys876 and Cys888 residues of sarcoplasmic reticulum Ca2+-ATPase result in a complete loss of Ca2+ transport activity without a loss of Ca2+-dependent ATPase activity. Role of the CYS876-CYS888 disulfide bond. Daiho T; Yamasaki K; Saino T; Kamidochi M; Satoh K; Iizuka H; Suzuki H J Biol Chem; 2001 Aug; 276(35):32771-8. PubMed ID: 11438520 [TBL] [Abstract][Full Text] [Related]
19. 2',3'-Dialdehyde ATP analog labels the Ca(2+)-ATPase of sarcoplasmic reticulum via the catalytic adenosine-nucleotide-binding site. Hohenegger M; Makinose M Eur J Biochem; 1992 Apr; 205(1):173-9. PubMed ID: 1532553 [TBL] [Abstract][Full Text] [Related]
20. Modification of histidine 5 in sarcoplasmic reticulum Ca2+-ATPase by diethyl pyrocarbonate causes strong inhibition of formation of the phosphoenzyme intermediate from inorganic phosphate. Yamasaki K; Daiho T; Saino T; Kanazawa T J Biol Chem; 1997 Dec; 272(49):30627-36. PubMed ID: 9388197 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]