These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 8911687)

  • 21. Calcium release-activated calcium current in rat mast cells.
    Hoth M; Penner R
    J Physiol; 1993 Jun; 465():359-86. PubMed ID: 8229840
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acquisition of meiotic competence is related to the functionality of the phosphoinositide/calcium signaling pathway in the mouse oocyte.
    Lefèvre B; Nagyova E; Pesty A; Testart J
    Exp Cell Res; 1997 Oct; 236(1):193-200. PubMed ID: 9344599
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inositol trisphosphate-induced calcium release in the generation of calcium oscillations in bovine eggs.
    Fissore RA; Pinto-Correia C; Robl JM
    Biol Reprod; 1995 Oct; 53(4):766-74. PubMed ID: 8547468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stimulation of Ca(2+)-dependent membrane currents in Xenopus oocytes by microinjection of pyrimidine nucleotide-glucose conjugates.
    Kim HY; Thomas D; Hanley MR
    Mol Pharmacol; 1996 Feb; 49(2):360-4. PubMed ID: 8632770
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcium-dependent chloride transient currents in the immature oocyte of the frog, Rana esculenta.
    Toselli M; Taglietti V; Tanzi F; D'Angelo E
    Arch Ital Biol; 1989 Mar; 127(2):69-80. PubMed ID: 2785786
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ca2+ oscillations and Ca2+ influx in Xenopus oocytes expressing a novel 5-hydroxytryptamine receptor.
    Parekh AB; Foguet M; Lübbert H; Stühmer W
    J Physiol; 1993 Sep; 469():653-71. PubMed ID: 8271222
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of release of Ca2+ from intracellular stores in response to ionomycin in oocytes of the frog Xenopus laevis.
    Yoshida S; Plant S
    J Physiol; 1992 Dec; 458():307-18. PubMed ID: 1302268
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Persistent current oscillations produced by activation of metabotropic glutamate receptors in immature rat CA3 hippocampal neurons.
    Aniksztejn L; Sciancalepore M; Ben Ari Y; Cherubini E
    J Neurophysiol; 1995 Apr; 73(4):1422-9. PubMed ID: 7643157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of the kinetics of inositol 1,4,5-trisphosphate-induced [Ca2+]i oscillations by calcium entry in pituitary gonadotrophs.
    Kukuljan M; Vergara L; Stojilkovic SS
    Biophys J; 1997 Feb; 72(2 Pt 1):698-707. PubMed ID: 9017197
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inositol 1,4,5-trisphosphate and diacylglycerol mimic bradykinin effects on mouse neuroblastoma x rat glioma hybrid cells.
    Brown DA; Higashida H
    J Physiol; 1988 Mar; 397():185-207. PubMed ID: 3261793
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Histamine-evoked Ca2+ oscillations in HeLa cells are sensitive to methylxanthines but insensitive to ryanodine.
    Diarra A; Wang R; Garneau L; Gallo-Payet N; Sauvé R
    Pflugers Arch; 1994 Jan; 426(1-2):129-38. PubMed ID: 7511800
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bradykinin and muscarine induce Ca(2+)-dependent oscillations of membrane potential in rat glioma cells indicating a rhythmic Ca2+ release from internal stores: thapsigargin and 2,5-di(tert-butyl)-1, 4-benzohydroquinone deplete InsP3-sensitive Ca2+ stores in glioma and in neuroblastoma-glioma hybrid cells.
    Reiser G; Cesar M; Binmöller FJ
    Exp Cell Res; 1992 Oct; 202(2):440-9. PubMed ID: 1397096
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Membrane currents in immature oocytes of the Rana perezi frog.
    Ivorra I; Morales A
    Pflugers Arch; 1997 Aug; 434(4):413-21. PubMed ID: 9211807
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of inositol trisphosphates and inositol tetrakisphosphate on Ca2+ release and Cl- current pattern in the Xenopus laevis oocyte.
    Ferguson JE; Han JK; Kao JP; Nuccitelli R
    Exp Cell Res; 1991 Feb; 192(2):352-65. PubMed ID: 1846334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition by Ca2+ of inositol trisphosphate-mediated Ca2+ liberation: a possible mechanism for oscillatory release of Ca2+.
    Parker I; Ivorra I
    Proc Natl Acad Sci U S A; 1990 Jan; 87(1):260-4. PubMed ID: 2296584
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ca2+ oscillations and sensitization of Ca2+ release in unfertilized mouse eggs injected with a sperm factor.
    Swann K
    Cell Calcium; 1994 Apr; 15(4):331-9. PubMed ID: 8055549
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Induction of Na+ channel voltage sensitivity in Xenopus oocytes depends on Ca2+ mobilization.
    Charpentier G; Kado RT
    J Cell Physiol; 1999 Feb; 178(2):258-66. PubMed ID: 10048590
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetics of the conductance evoked by noradrenaline, inositol trisphosphate or Ca2+ in guinea-pig isolated hepatocytes.
    Ogden DC; Capiod T; Walker JW; Trentham DR
    J Physiol; 1990 Mar; 422():585-602. PubMed ID: 2161925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of Ca2+ transients induced by intracellular photorelease of InsP3 in mouse ovarian oocytes.
    Peres A; Bertollini L; Racca C
    Cell Calcium; 1991 Jul; 12(7):457-65. PubMed ID: 1934036
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of calcium spiking frequency in pituitary gonadotrophs by a single-pool cytoplasmic oscillator.
    Stojilkovic SS; Tomic M; Kukuljan M; Catt KJ
    Mol Pharmacol; 1994 May; 45(5):1013-21. PubMed ID: 8190091
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.