These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 8912032)

  • 1. Evaluation of dynamic performance in liquid-filled catheter systems for measuring invasive blood pressure.
    Todorovic M; Jensen EW; Thøgersen C
    Int J Clin Monit Comput; 1996 Aug; 13(3):173-8. PubMed ID: 8912032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of arterial pressure using catheter-transducer systems. Improvement using the Accudynamic.
    Allan MW; Gray WM; Asbury AJ
    Br J Anaesth; 1988 Mar; 60(4):413-8. PubMed ID: 3355737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic response of the ROSE damping device.
    Kleinman B; Powell S
    J Clin Monit; 1989 Apr; 5(2):111-5. PubMed ID: 2723705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Reliability and survival of arterial catheters: optimal dynamic response].
    Riachy M; Riachy E; Sleilaty G; Dabar G; Yazigi A; Khayat G
    Ann Fr Anesth Reanim; 2007 Feb; 26(2):119-24. PubMed ID: 17166690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Invasive blood pressure measurements. Factual safety].
    Nielsen LH
    Ugeskr Laeger; 1994 Aug; 156(31):4450-3. PubMed ID: 8066948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of a needle valve variable resistor to improve invasive blood pressure monitoring.
    Abrams JH; Olson ML; Marino JA; Cerra FB
    Crit Care Med; 1984 Nov; 12(11):978-82. PubMed ID: 6499484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [How accurate is invasive blood pressure determination with fluid-filled pressure line systems?].
    Francke A; Wachsmuth H
    Anaesthesiol Reanim; 2000; 25(2):46-54. PubMed ID: 10816897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equivalence of fast flush and square wave testing of blood pressure monitoring systems.
    Kleinman B; Powell S; Gardner RM
    J Clin Monit; 1996 Mar; 12(2):149-54. PubMed ID: 8823635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance artefacts in modern pressure monitoring systems.
    Bocchi L; Romagnoli S
    J Clin Monit Comput; 2016 Oct; 30(5):707-14. PubMed ID: 26310613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy and dynamic response of disposable pressure transducer-tubing systems.
    Hunziker P
    Can J Anaesth; 1987 Jul; 34(4):409-14. PubMed ID: 3608063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Invasive blood pressure monitoring systems in the ICU: influence of the blood-conserving device on the dynamic response characteristics and agreement with noninvasive measurements.
    Melamed R; Johnson K; Pothen B; Sprenkle MD; Johnson PJ
    Blood Press Monit; 2012 Oct; 17(5):179-83. PubMed ID: 22797516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding natural frequency and damping and how they relate to the measurement of blood pressure.
    Kleinman B
    J Clin Monit; 1989 Apr; 5(2):137-47. PubMed ID: 2656925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Umbilical catheters and arterial blood pressure monitoring.
    Goodwin SR; Graves SA; van der Aa J
    J Clin Monit; 1985 Oct; 1(4):227-31. PubMed ID: 3831265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intra-arterial pressure measurement in neonates: dynamic response requirements.
    van Genderingen HR; Gevers M; Hack WW
    Physiol Meas; 1995 Feb; 16(1):55-61. PubMed ID: 7749357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recommendation of a clinical impulse response analysis for catheter calibration-dumping coefficient and natural frequency are incomplete parameters for clinical evaluation.
    Watanabe H; Yagi S; Namiki A
    J Clin Monit Comput; 2006 Feb; 20(1):37-42. PubMed ID: 16520875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring systolic arterial blood pressure. Possible errors from extension tubes or disposable transducer domes.
    Rothe CF; Kim KC
    Crit Care Med; 1980 Nov; 8(11):683-9. PubMed ID: 7428397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of filtering methods for acquiring radial intra-artery blood pressure waveforms.
    Hersh LT; Friedman B; Luczyk W; Sesing J
    J Clin Monit Comput; 2015 Oct; 29(5):659-69. PubMed ID: 25516162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the marvelous™ three-way stopcock on the natural frequency and damping coefficient in blood pressure transducer kits.
    Fujiwara SJL; Tachihara K; Mori S; Ouchi K; Itakura S; Yasuda M; Hitosugi T; Imaizumi U; Miki Y; Toyoguchi I; Yoshida KI; Yokoyama T
    J Clin Monit Comput; 2018 Feb; 32(1):63-72. PubMed ID: 28074417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Why the natural frequency and the damping coefficient do not evaluate the dynamic response of clinically used pressure monitoring circuits correctly.
    Watanabe H; Yagi SI
    J Anesth; 2020 Dec; 34(6):898-903. PubMed ID: 32860541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fidelity and dynamic response of fluid-filled catheter systems for direct measurement of lumbar cerebrospinal fluid pressure.
    Kumar M; Werner E; Murray MJ
    J Clin Monit; 1993 Nov; 9(5):314-20. PubMed ID: 8106883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.