These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 8912197)

  • 1. An easily constructed carbon fiber recording and microiontophoresis assembly.
    Fu J; Lorden JF
    J Neurosci Methods; 1996 Oct; 68(2):247-51. PubMed ID: 8912197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microiontophoresis electrode location by neurohistological marking: Comparison of four native dyes applied from current balancing electrode channels.
    Kovács P; Dénes V; Kellényi L; Hernádi I
    J Pharmacol Toxicol Methods; 2005; 51(2):147-51. PubMed ID: 15767208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple and effective method for preventing the formation of salt bridges between barrels of a multibarrel microiontophoresis electrode.
    Shi WX; Bunney BS
    J Neurosci Methods; 1990 Oct; 35(1):89-91. PubMed ID: 2277537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Method for the construction and use of carbon fiber multibarrel electrodes for deep brain recordings in the alert animal.
    Inagaki K; Heiney SA; Blazquez PM
    J Neurosci Methods; 2009 Apr; 178(2):255-62. PubMed ID: 19135083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of a metal-cored multi-barrelled microiontophoresis assembly.
    Hellier M; Boers P; Lambert GA
    J Neurosci Methods; 1990 Apr; 32(1):55-61. PubMed ID: 2335967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combined recording and microiontophoresis technique for input-output analysis of single neurons in the mammalian CNS.
    Gottschaldt KM; Hicks TP; Vahle-Hinz C
    J Neurosci Methods; 1988 Apr; 23(3):233-9. PubMed ID: 3367660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of noradrenaline iontophoresis.
    Armstrong-James M; Millar J; Kruk ZL
    Nature; 1980 Nov; 288(5787):181-3. PubMed ID: 7432519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multi-electrode array for combined microiontophoresis and multiple single-unit recordings.
    Haidarliu S; Shulz D; Ahissar E
    J Neurosci Methods; 1995 Feb; 56(2):125-31. PubMed ID: 7752678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple method for the construction of a recording-injection microelectrode with glass-insulated microwire.
    Tsai ML; Chai CY; Yen CT
    J Neurosci Methods; 1997 Mar; 72(1):1-4. PubMed ID: 9128161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A technique for microiontophoretic study of single neurones in the behaving monkey.
    Perrett DI; Rolls ET
    J Neurosci Methods; 1985 Feb; 12(4):289-95. PubMed ID: 3921775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the techniques of pressure ejection and microiontophoresis using in vivo electrochemistry.
    Gerhardt GA; Palmer MR
    J Neurosci Methods; 1987 Dec; 22(2):147-59. PubMed ID: 3437777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glass pipette-carbon fiber microelectrodes for evoked potential recordings.
    Moraes MF; Garcia-Cairasco N
    Braz J Med Biol Res; 1997 Nov; 30(11):1319-24. PubMed ID: 9532241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A tungsten-in-glass iontophoresis assembly for studying input-output relationships in central neurons.
    Godwin DW
    J Neurosci Methods; 1993 Sep; 49(3):211-23. PubMed ID: 8271840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Drug Concentrations Delivered by Microiontophoresis.
    Kirkpatrick DC; Wightman RM
    Anal Chem; 2016 Jun; 88(12):6492-9. PubMed ID: 27212615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of electrophysiologically distinct neuronal populations in the rat hippocampus for neuropharmacological testing under in vivo conditions.
    Bali ZK; Budai D; Hernádi I
    Acta Biol Hung; 2014 Sep; 65(3):241-51. PubMed ID: 25194728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple and reliable method for construction of parallel multibarrel microelectrodes.
    Verberne AJ; Owens NC; Jackman GP
    Brain Res Bull; 1995; 36(1):107-8. PubMed ID: 7882042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of extracellular and intracellular recording during extracellular microiontophoresis.
    Engberg I; Flatman JA; Lambert JD
    J Neurosci Methods; 1979 Oct; 1(3):219-33. PubMed ID: 544966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel carbon fiber bundle microelectrode and modified brain slice chamber for recording long-term multiunit activity from brain slices.
    Tcheng TK; Gillette MU
    J Neurosci Methods; 1996 Nov; 69(2):163-9. PubMed ID: 8946319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel carbon fiber implantation assembly for cerebral voltammetric measurements in freely moving rats.
    Louilot A; Serrano A; D'Angio M
    Physiol Behav; 1987; 41(3):227-31. PubMed ID: 3432380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A tungsten electrode insulated by a concentric arrangement of glass-pipettes for iontophoresis.
    Sonnhof U; Richter DW; Steinberg R
    Pflugers Arch; 1975 Oct; 360(1):45-8. PubMed ID: 1237864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.