These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 8912334)

  • 1. Long-term changes, induced by microstimulation of the neocortex, in the efficiency of excitatory postsynaptic transmission in the thalamocortical networks.
    Sil'kis IG
    Neurosci Behav Physiol; 1996; 26(4):301-12. PubMed ID: 8912334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Long-term changes in the efficiency of excitatory synaptic transmission in the thalamocortical networks evoked by microstimulation of the neocortex].
    Sil'kis IG
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1995; 45(2):321-34. PubMed ID: 7597829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term changes in the efficiency of inhibitory transmission in the thalamocortical neuronal networks induced by microstimulation of the cortex.
    Sil'kis IG
    Neurosci Behav Physiol; 1996; 26(5):416-27. PubMed ID: 9000213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plastic reorganizations of the receptive fields of neurons of the auditory cortex and the medial geniculate body induced by microstimulation of the auditory cortex.
    Sil'kis IG; Rapoport SSh
    Neurosci Behav Physiol; 1995; 25(4):322-39. PubMed ID: 8570040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Long-term changes in the efficiency of inhibitory transmission in the thalamocortical neuronal networks evoked by cortical microstimulation].
    Sil'kis IG
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1995; 45(3):538-50. PubMed ID: 7645329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitatory interactions in neuronal networks which include cells of the auditory cortex and the medial geniculate body.
    Sil'kis IG
    Neurosci Behav Physiol; 1995; 25(6):462-73. PubMed ID: 8848079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Excitatory interactions in the nerve nets switching on the cells of the auditory cortex and the medial geniculate body].
    Sil'kis IG
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1994; 44(4-5):762-76. PubMed ID: 7810218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory interactions in neuronal networks including cells of the auditory cortex and the medial geniculate body.
    Sil'kis IG
    Neurosci Behav Physiol; 1996; 26(1):62-72. PubMed ID: 8801471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency-specific plasticity of the auditory cortex elicited by thalamic stimulation in the rat.
    Zhu ZR; Xu FL; Wu JH; Ren SC; Zhang YH; Hu B; Zhang J; Han L; Xiong Y
    Neurosci Lett; 2013 Oct; 555():30-5. PubMed ID: 24036457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The plastic reorganization of the neuronal receptive fields of the auditory cortex and medial geniculate body evoked by microstimulation of the auditory cortex].
    Sil'kis IG; Rapoport SSh
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1994; 44(3):548-68. PubMed ID: 7941719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleus basalis stimulation facilitates thalamocortical synaptic transmission in the rat auditory cortex.
    Metherate R; Ashe JH
    Synapse; 1993 Jun; 14(2):132-43. PubMed ID: 8392756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous white noise exposure during and after auditory critical period differentially alters bidirectional thalamocortical plasticity in rat auditory cortex in vivo.
    Speechley WJ; Hogsden JL; Dringenberg HC
    Eur J Neurosci; 2007 Nov; 26(9):2576-84. PubMed ID: 17970743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gain modulation of synaptic inputs by network state in auditory cortex in vivo.
    Reig R; Zerlaut Y; Vergara R; Destexhe A; Sanchez-Vives MV
    J Neurosci; 2015 Feb; 35(6):2689-702. PubMed ID: 25673859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory thalamocortical synaptic transmission in vitro.
    Cruikshank SJ; Rose HJ; Metherate R
    J Neurophysiol; 2002 Jan; 87(1):361-84. PubMed ID: 11784756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-term Synaptic Depression in the Feedforward Inhibitory Circuit in the Dorsal Lateral Geniculate Nucleus.
    Augustinaite S; Heggelund P
    Neuroscience; 2018 Aug; 384():76-86. PubMed ID: 29802882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-tetanic modification of the efficiency of excitatory transmission in neural networks including interhemispheric connections.
    Bogdanova OG; Sil'kis IG
    Neurosci Behav Physiol; 2002; 32(1):15-24. PubMed ID: 11838551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortex is driven by weak but synchronously active thalamocortical synapses.
    Bruno RM; Sakmann B
    Science; 2006 Jun; 312(5780):1622-7. PubMed ID: 16778049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nicotinic control of axon excitability regulates thalamocortical transmission.
    Kawai H; Lazar R; Metherate R
    Nat Neurosci; 2007 Sep; 10(9):1168-75. PubMed ID: 17704774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic strength at the thalamocortical input to layer IV neonatal barrel cortex is regulated by protein kinase C.
    Scott HL; Braud S; Bannister NJ; Isaac JT
    Neuropharmacology; 2007 Jan; 52(1):185-92. PubMed ID: 16890249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Post-tetanic modification of the efficacy of excitatory transmission in neuronal networks with interhemispheric connections].
    Bogdanova OG; Sil'kis IG
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2001; 51(1):61-72. PubMed ID: 11253402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.