These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 8912669)

  • 1. Nitric oxide-dependent NAD linkage to glyceraldehyde-3-phosphate dehydrogenase: possible involvement of a cysteine thiyl radical intermediate.
    Minetti M; Pietraforte D; Di Stasi AM; Mallozzi C
    Biochem J; 1996 Oct; 319 ( Pt 2)(Pt 2):369-75. PubMed ID: 8912669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen free radicals enhance the nitric oxide-induced covalent NAD(+)-linkage to neuronal glyceraldehyde-3-phosphate dehydrogenase.
    Marin P; Maus M; Bockaert J; Glowinski J; Prémont J
    Biochem J; 1995 Aug; 309 ( Pt 3)(Pt 3):891-8. PubMed ID: 7639707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical role of sulfenic acid formation of thiols in the inactivation of glyceraldehyde-3-phosphate dehydrogenase by nitric oxide.
    Ishii T; Sunami O; Nakajima H; Nishio H; Takeuchi T; Hata F
    Biochem Pharmacol; 1999 Jul; 58(1):133-43. PubMed ID: 10403526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation by nitric oxide of an NAD linkage to glyceraldehyde-3-phosphate dehydrogenase.
    McDonald LJ; Moss J
    Proc Natl Acad Sci U S A; 1993 Jul; 90(13):6238-41. PubMed ID: 8327504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiols mediate superoxide-dependent NADH modification of glyceraldehyde-3-phosphate dehydrogenase.
    Rivera-Nieves J; Thompson WC; Levine RL; Moss J
    J Biol Chem; 1999 Jul; 274(28):19525-31. PubMed ID: 10391884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein thiol modification of glyceraldehyde-3-phosphate dehydrogenase as a target for nitric oxide signaling.
    Brüne B; Lapetina EG
    Genet Eng (N Y); 1995; 17():149-64. PubMed ID: 7540026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glyceraldehyde-3-phosphate dehydrogenase inactivation by peroxynitrite.
    Souza JM; Radi R
    Arch Biochem Biophys; 1998 Dec; 360(2):187-94. PubMed ID: 9851830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active site cysteine-null glyceraldehyde-3-phosphate dehydrogenase (GAPDH) rescues nitric oxide-induced cell death.
    Kubo T; Nakajima H; Nakatsuji M; Itakura M; Kaneshige A; Azuma YT; Inui T; Takeuchi T
    Nitric Oxide; 2016 Feb; 53():13-21. PubMed ID: 26725192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring the Oxidation State and Enzymatic Activity of Glyceraldehyde Phosphate Dehydrogenase (GAPDH).
    Montllor-Albalate C; Thompson AE; Kim H; Reddi AR
    Methods Mol Biol; 2023; 2675():219-236. PubMed ID: 37258767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered glycolytic glyceraldehyde-3-phosphate dehydrogenase binds the anti conformation of NAD+ nicotinamide but does not experience A-specific hydride transfer.
    Eyschen J; Vitoux B; Marraud M; Cung MT; Branlant G
    Arch Biochem Biophys; 1999 Apr; 364(2):219-27. PubMed ID: 10190977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide and NAD-dependent protein modification.
    McDonald LJ; Moss J
    Mol Cell Biochem; 1994 Sep; 138(1-2):201-6. PubMed ID: 7898464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide-induced modification of glyceraldehyde-3-phosphate dehydrogenase with NAD+ is not ADP-ribosylation.
    Itoga M; Tsuchiya M; Ishino H; Shimoyama M
    J Biochem; 1997 Jun; 121(6):1041-6. PubMed ID: 9354374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glyceraldehyde-3-phosphate dehydrogenase is required for the transport of nitric oxide in platelets.
    McDonald B; Reep B; Lapetina EG; Molina y Vedia L
    Proc Natl Acad Sci U S A; 1993 Dec; 90(23):11122-6. PubMed ID: 7902582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of covalent modification of glyceraldehyde-3-phosphate dehydrogenase at its active site thiol by nitric oxide, peroxynitrite and related nitrosating agents.
    Mohr S; Stamler JS; Brüne B
    FEBS Lett; 1994 Jul; 348(3):223-7. PubMed ID: 8034046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The active site cysteine of the proapoptotic protein glyceraldehyde-3-phosphate dehydrogenase is essential in oxidative stress-induced aggregation and cell death.
    Nakajima H; Amano W; Fujita A; Fukuhara A; Azuma YT; Hata F; Inui T; Takeuchi T
    J Biol Chem; 2007 Sep; 282(36):26562-74. PubMed ID: 17613523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. S-nitrosoglutathione reversibly inhibits GAPDH by S-nitrosylation.
    Padgett CM; Whorton AR
    Am J Physiol; 1995 Sep; 269(3 Pt 1):C739-49. PubMed ID: 7573405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of the 2-oxo acid dehydrogenase complexes upon generation of intrinsic radical species.
    Bunik VI; Sievers C
    Eur J Biochem; 2002 Oct; 269(20):5004-15. PubMed ID: 12383259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase.
    Zhang J; Snyder SH
    Proc Natl Acad Sci U S A; 1992 Oct; 89(20):9382-5. PubMed ID: 1409644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Posttranslational modification of glyceraldehyde-3-phosphate dehydrogenase by S-nitrosylation and subsequent NADH attachment.
    Mohr S; Stamler JS; Brüne B
    J Biol Chem; 1996 Feb; 271(8):4209-14. PubMed ID: 8626764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of glyceraldehyde-3-phosphate dehydrogenase inactivation by tyrosine nitration.
    Palamalai V; Miyagi M
    Protein Sci; 2010 Feb; 19(2):255-62. PubMed ID: 20014444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.