These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8913301)

  • 1. Using evolutionary trees in protein secondary structure prediction and other comparative sequence analyses.
    Goldman N; Thorne JL; Jones DT
    J Mol Biol; 1996 Oct; 263(2):196-208. PubMed ID: 8913301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein secondary structure prediction using local alignments.
    Salamov AA; Solovyev VV
    J Mol Biol; 1997 Apr; 268(1):31-6. PubMed ID: 9149139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of distant residue contacts with the use of evolutionary information.
    Vicatos S; Reddy BV; Kaznessis Y
    Proteins; 2005 Mar; 58(4):935-49. PubMed ID: 15645442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of protein secondary structure content using amino acid composition and evolutionary information.
    Lee S; Lee BC; Kim D
    Proteins; 2006 Mar; 62(4):1107-14. PubMed ID: 16345074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining the GOR V algorithm with evolutionary information for protein secondary structure prediction from amino acid sequence.
    Kloczkowski A; Ting KL; Jernigan RL; Garnier J
    Proteins; 2002 Nov; 49(2):154-66. PubMed ID: 12210997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of gapped positions in multiple sequence alignments on secondary structure prediction methods.
    Simossis VA; Heringa J
    Comput Biol Chem; 2004 Dec; 28(5-6):351-66. PubMed ID: 15556476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GASP: Gapped Ancestral Sequence Prediction for proteins.
    Edwards RJ; Shields DC
    BMC Bioinformatics; 2004 Sep; 5():123. PubMed ID: 15350199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PROMALS: towards accurate multiple sequence alignments of distantly related proteins.
    Pei J; Grishin NV
    Bioinformatics; 2007 Apr; 23(7):802-8. PubMed ID: 17267437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary, mechanistic, and predictive analyses of the hydroxymethyldihydropterin pyrophosphokinase family of proteins.
    Gerloff DL; Cannarozzi GM; Joachimiak M; Cohen FE; Schreiber D; Benner SA
    Biochem Biophys Res Commun; 1999 Jan; 254(1):70-6. PubMed ID: 9920734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of protein secondary structure content for the twilight zone sequences.
    Homaeian L; Kurgan LA; Ruan J; Cios KJ; Chen K
    Proteins; 2007 Nov; 69(3):486-98. PubMed ID: 17623861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hidden Markov models that use predicted secondary structures for fold recognition.
    Hargbo J; Elofsson A
    Proteins; 1999 Jul; 36(1):68-76. PubMed ID: 10373007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of multiple-sequence alignment based on multiple-structure alignment.
    Shatsky M; Nussinov R; Wolfson HJ
    Proteins; 2006 Jan; 62(1):209-17. PubMed ID: 16294339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PFRES: protein fold classification by using evolutionary information and predicted secondary structure.
    Chen K; Kurgan L
    Bioinformatics; 2007 Nov; 23(21):2843-50. PubMed ID: 17942446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of protein structural class using novel evolutionary collocation-based sequence representation.
    Chen K; Kurgan LA; Ruan J
    J Comput Chem; 2008 Jul; 29(10):1596-604. PubMed ID: 18293306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein secondary structure prediction using three neural networks and a segmental semi Markov model.
    Malekpour SA; Naghizadeh S; Pezeshk H; Sadeghi M; Eslahchi C
    Math Biosci; 2009 Feb; 217(2):145-50. PubMed ID: 19046975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the conformation of proteins from sequences. Progress and future progress.
    Benner SA
    J Mol Recognit; 1995; 8(1-2):9-28. PubMed ID: 7598957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein topology recognition from secondary structure sequences: application of the hidden Markov models to the alpha class proteins.
    Di Francesco V; Garnier J; Munson PJ
    J Mol Biol; 1997 Mar; 267(2):446-63. PubMed ID: 9096237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining evolutionary and structural information for local protein structure prediction.
    Pei J; Grishin NV
    Proteins; 2004 Sep; 56(4):782-94. PubMed ID: 15281130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving protein secondary structure prediction with aligned homologous sequences.
    Di Francesco V; Garnier J; Munson PJ
    Protein Sci; 1996 Jan; 5(1):106-13. PubMed ID: 8771202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.