These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 8913604)

  • 1. Mechanism of alamethicin insertion into lipid bilayers.
    He K; Ludtke SJ; Heller WT; Huang HW
    Biophys J; 1996 Nov; 71(5):2669-79. PubMed ID: 8913604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray diffraction study of lipid bilayer membranes interacting with amphiphilic helical peptides: diphytanoyl phosphatidylcholine with alamethicin at low concentrations.
    Wu Y; He K; Ludtke SJ; Huang HW
    Biophys J; 1995 Jun; 68(6):2361-9. PubMed ID: 7647240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics of pore formation induced by membrane active peptides.
    Lee MT; Chen FY; Huang HW
    Biochemistry; 2004 Mar; 43(12):3590-9. PubMed ID: 15035629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of changing the size of lipid headgroup on peptide insertion into membranes.
    Heller WT; He K; Ludtke SJ; Harroun TA; Huang HW
    Biophys J; 1997 Jul; 73(1):239-44. PubMed ID: 9199788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuum solvent model calculations of alamethicin-membrane interactions: thermodynamic aspects.
    Kessel A; Cafiso DS; Ben-Tal N
    Biophys J; 2000 Feb; 78(2):571-83. PubMed ID: 10653772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of the peptide antibiotic alamethicin with bilayer- and non-bilayer-forming lipids: influence of increasing alamethicin concentration on the lipids supramolecular structures.
    Angelova A; Ionov R; Koch MH; Rapp G
    Arch Biochem Biophys; 2000 Jun; 378(1):93-106. PubMed ID: 10871049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Entropy-driven softening of fluid lipid bilayers by alamethicin.
    Pabst G; Danner S; Podgornik R; Katsaras J
    Langmuir; 2007 Nov; 23(23):11705-11. PubMed ID: 17939689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of alamethicin with ether-linked phospholipid bilayers: oriented circular dichroism, 31P solid-state NMR, and differential scanning calorimetry studies.
    Dave PC; Billington E; Pan YL; Straus SK
    Biophys J; 2005 Oct; 89(4):2434-42. PubMed ID: 16055546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial peptide alamethicin insertion into lipid bilayer: a QCM-D exploration.
    Wang KF; Nagarajan R; Camesano TA
    Colloids Surf B Biointerfaces; 2014 Apr; 116():472-81. PubMed ID: 24561501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface binding of alamethicin stabilizes its helical structure: molecular dynamics simulations.
    Tieleman DP; Berendsen HJ; Sansom MS
    Biophys J; 1999 Jun; 76(6):3186-91. PubMed ID: 10354443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane thinning effect of the beta-sheet antimicrobial protegrin.
    Heller WT; Waring AJ; Lehrer RI; Harroun TA; Weiss TM; Yang L; Huang HW
    Biochemistry; 2000 Jan; 39(1):139-45. PubMed ID: 10625488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of the alamethicin pore reconstructed by x-ray diffraction analysis.
    Qian S; Wang W; Yang L; Huang HW
    Biophys J; 2008 May; 94(9):3512-22. PubMed ID: 18199659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between the free energy of a channel-forming voltage-gated peptide and the spontaneous curvature of bilayer lipids.
    Lewis JR; Cafiso DS
    Biochemistry; 1999 May; 38(18):5932-8. PubMed ID: 10231547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-dependent insertion of alamethicin at phospholipid/water and octane/water interfaces.
    Tieleman DP; Berendsen HJ; Sansom MS
    Biophys J; 2001 Jan; 80(1):331-46. PubMed ID: 11159406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore formation in lipid membranes by alamethicin.
    Fringeli UP; Fringeli M
    Proc Natl Acad Sci U S A; 1979 Aug; 76(8):3852-6. PubMed ID: 291045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological interrogation of asymmetric droplet interface bilayers reveals surface-bound alamethicin induces lipid flip-flop.
    Taylor G; Nguyen MA; Koner S; Freeman E; Collier CP; Sarles SA
    Biochim Biophys Acta Biomembr; 2019 Jan; 1861(1):335-343. PubMed ID: 30006208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation.
    Chen FY; Lee MT; Huang HW
    Biophys J; 2003 Jun; 84(6):3751-8. PubMed ID: 12770881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alamethicin disrupts the cholesterol distribution in dimyristoyl phosphatidylcholine-cholesterol lipid bilayers.
    Qian S; Rai D; Heller WT
    J Phys Chem B; 2014 Sep; 118(38):11200-8. PubMed ID: 25210841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alamethicin-lipid interaction studied by energy dispersive X-ray diffraction.
    Domenici F; Panichelli D; Castellano AC
    Colloids Surf B Biointerfaces; 2009 Mar; 69(2):216-20. PubMed ID: 19135341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of protein-ligand interaction on the membranes using C-terminus biotin-tagged alamethicin.
    Zhang Y; Futaki S; Kiwada T; Sugiura Y
    Bioorg Med Chem; 2002 Aug; 10(8):2635-9. PubMed ID: 12057652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.