These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 8913621)

  • 1. Aspartic proteinases: Fourier transform infrared spectroscopic studies of a model of the active side.
    Iliadis G; Brzezinski B; Zundel G
    Biophys J; 1996 Nov; 71(5):2840-7. PubMed ID: 8913621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aspartic proteinases--Fourier transform IR studies of the aspartic carboxylic groups in the active site of pepsin.
    Iliadis G; Zundel G; Brzezinski B
    FEBS Lett; 1994 Oct; 352(3):315-7. PubMed ID: 7925992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A quantum mechanical study of the active site of aspartic proteinases.
    Beveridge AJ; Heywood GC
    Biochemistry; 1993 Apr; 32(13):3325-33. PubMed ID: 8461297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Determination of activity of aspartic proteinases by cleavage of new chromogenic substrates].
    Litvinova OV; Balandina GN; Stepanov VM
    Bioorg Khim; 1998 Mar; 24(3):175-8. PubMed ID: 9612558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct observation by X-ray analysis of the tetrahedral "intermediate" of aspartic proteinases.
    Veerapandian B; Cooper JB; Sali A; Blundell TL; Rosati RL; Dominy BW; Damon DB; Hoover DJ
    Protein Sci; 1992 Mar; 1(3):322-8. PubMed ID: 1304340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray analyses of aspartic proteinases. III Three-dimensional structure of endothiapepsin complexed with a transition-state isostere inhibitor of renin at 1.6 A resolution.
    Veerapandian B; Cooper JB; Sali A; Blundell TL
    J Mol Biol; 1990 Dec; 216(4):1017-29. PubMed ID: 2266553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A theoretical study of torsional flexibility in the active site of aspartic proteinases: implications for catalysis.
    Beveridge A
    Proteins; 1996 Mar; 24(3):322-34. PubMed ID: 8778779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A systematic series of synthetic chromophoric substrates for aspartic proteinases.
    Dunn BM; Jimenez M; Parten BF; Valler MJ; Rolph CE; Kay J
    Biochem J; 1986 Aug; 237(3):899-906. PubMed ID: 3541904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75.
    Furutani Y; Kawanabe A; Jung KH; Kandori H
    Biochemistry; 2005 Sep; 44(37):12287-96. PubMed ID: 16156642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model molecules for the active centre of alcoholdehydrogenases--an FT-IR study.
    Brzezinski B; Urjasz H; Zundel G; Bartl F
    Biochem Biophys Res Commun; 1997 Feb; 231(2):473-6. PubMed ID: 9070303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of crystal structures of aspartic proteinases: on the role of amino acid residues adjacent to the catalytic site of pepsin-like enzymes.
    Andreeva NS; Rumsh LD
    Protein Sci; 2001 Dec; 10(12):2439-50. PubMed ID: 11714911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model molecule of the hydrogen-bonded chain in the active site of bacteriorhodopsin.
    Brzezinski B; Urjasz H; Zundel G
    Biochem Biophys Res Commun; 1996 Feb; 219(1):273-6. PubMed ID: 8619821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray analyses of aspartic proteinases. II. Three-dimensional structure of the hexagonal crystal form of porcine pepsin at 2.3 A resolution.
    Cooper JB; Khan G; Taylor G; Tickle IJ; Blundell TL
    J Mol Biol; 1990 Jul; 214(1):199-222. PubMed ID: 2115088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Conserved interactions of the active carboxyls in pepsin-like enzymes and retroviral proteases].
    Andreeva NS; Popov ME
    Mol Biol (Mosk); 2002; 36(5):939-44. PubMed ID: 12391858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structural comparison of 21 inhibitor complexes of the aspartic proteinase from Endothia parasitica.
    Bailey D; Cooper JB
    Protein Sci; 1994 Nov; 3(11):2129-43. PubMed ID: 7703859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aspartic proteinases in disease: a structural perspective.
    Cooper JB
    Curr Drug Targets; 2002 Apr; 3(2):155-73. PubMed ID: 11958298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR study of the inhibition of pepsin by glyoxal inhibitors: mechanism of tetrahedral intermediate stabilization by the aspartyl proteases.
    Cosgrove S; Rogers L; Hewage CM; Malthouse JP
    Biochemistry; 2007 Oct; 46(39):11205-15. PubMed ID: 17824620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site.
    Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H
    Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary substrate binding in aspartic proteinases: contributions of subsites S3 and S'2 to kcat.
    Balbaa M; Cunningham A; Hofmann T
    Arch Biochem Biophys; 1993 Nov; 306(2):297-303. PubMed ID: 8215428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The catalytic mechanism of aspartic proteinases.
    Pearl LH
    FEBS Lett; 1987 Apr; 214(1):8-12. PubMed ID: 3552727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.