These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 8913621)

  • 41. Sequence-specific Ni(II)-dependent peptide bond hydrolysis for protein engineering: reaction conditions and molecular mechanism.
    Kopera E; Krezel A; Protas AM; Belczyk A; Bonna A; Wysłouch-Cieszyńska A; Poznański J; Bal W
    Inorg Chem; 2010 Jul; 49(14):6636-45. PubMed ID: 20550138
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Infrared and nuclear magnetic resonance spectroscopic study of secondary amide hydrogen bonding in benzoyl PABA derivatives (retinoids).
    Dalterio R; Huang XS; Yu KL
    Appl Spectrosc; 2007 Jun; 61(6):603-7. PubMed ID: 17650370
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adsorption of C4-dicarboxylic acids at the hematite/water interface.
    Hwang YS; Lenhart JJ
    Langmuir; 2008 Dec; 24(24):13934-43. PubMed ID: 19360935
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An artificial aspartic proteinase system.
    Jiang L; Liu Z; Liang Z; Gao Y
    Bioorg Med Chem; 2005 Jun; 13(11):3673-80. PubMed ID: 15862996
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An analysis of subdomain orientation, conformational change and disorder in relation to crystal packing of aspartic proteinases.
    Bailey D; Carpenter EP; Coker A; Coker S; Read J; Jones AT; Erskine P; Aguilar CF; Badasso M; Toldo L; Rippmann F; Sanz-Aparicio J; Albert A; Blundell TL; Roberts NB; Wood SP; Cooper JB
    Acta Crystallogr D Biol Crystallogr; 2012 May; 68(Pt 5):541-52. PubMed ID: 22525752
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Interdomain interactions in aspartic proteases of higher organisms and their analogs in retroviral enzymes].
    Andreeva NS; Gurskaia GV
    Mol Biol (Mosk); 2006; 40(3):482-8. PubMed ID: 16813167
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrostatic influence of QA reduction on the IR vibrational mode of the 10a-ester C==O of HA demonstrated by mutations at residues Glu L104 and Trp L100 in reaction centers from Rhodobacter sphaeroides.
    Breton J; Nabedryk E; Allen JP; Williams JC
    Biochemistry; 1997 Apr; 36(15):4515-25. PubMed ID: 9109660
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of the interaction of Ca2+ with hydroxy and non-hydroxy fatty acid species of cerebroside sulfate by Fourier transform infrared spectroscopy and molecular modeling.
    Menikh A; Nyholm PG; Boggs JM
    Biochemistry; 1997 Mar; 36(12):3438-47. PubMed ID: 9131993
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [The structure of pepsin. II. Structure of the enzyme active site (at 2 angstroms resolution)].
    Gushchina AE; Andreeva NS
    Mol Biol (Mosk); 1985; 19(1):225-9. PubMed ID: 3920506
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanism of acid protease catalysis based on the crystal structure of penicillopepsin.
    James MN; Hsu IN; Delbaere LT
    Nature; 1977 Jun; 267(5614):808-13. PubMed ID: 895839
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Why does pepsin have a negative charge at very low pH? An analysis of conserved charged residues in aspartic proteinases.
    Andreeva NS; James MN
    Adv Exp Med Biol; 1991; 306():39-45. PubMed ID: 1812734
    [No Abstract]   [Full Text] [Related]  

  • 52. Quantum-chemical study of the catalytic mechanism of aspartic proteinases.
    Antonov VK; Alexandrov SL
    Adv Exp Med Biol; 1991; 306():133-7. PubMed ID: 1812700
    [No Abstract]   [Full Text] [Related]  

  • 53. Pepsin-catalyzed exchange of oxygen atoms between water and carboxylic acids.
    SHARON N; GRISARO V; NEUMANN H
    Arch Biochem Biophys; 1962 Apr; 97():219-21. PubMed ID: 13911390
    [No Abstract]   [Full Text] [Related]  

  • 54. Mechanism of pepsin catalysis: general base catalysis by the active-site carboxylate ion.
    Antonov VK; Ginodman LM; Kapitannikov YV; Barshevskaya TN; Gurova AG; Rumsh LD
    FEBS Lett; 1978 Apr; 88(1):87-90. PubMed ID: 346376
    [No Abstract]   [Full Text] [Related]  

  • 55. Aspartic proteinases--Fourier transform IR studies of the aspartic carboxylic groups in the active site of pepsin.
    Iliadis G; Zundel G; Brzezinski B
    FEBS Lett; 1994 Oct; 352(3):315-7. PubMed ID: 7925992
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A quantum mechanical study of the active site of aspartic proteinases.
    Beveridge AJ; Heywood GC
    Biochemistry; 1993 Apr; 32(13):3325-33. PubMed ID: 8461297
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Determination of activity of aspartic proteinases by cleavage of new chromogenic substrates].
    Litvinova OV; Balandina GN; Stepanov VM
    Bioorg Khim; 1998 Mar; 24(3):175-8. PubMed ID: 9612558
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Aspartic proteinases in disease: a structural perspective.
    Cooper JB
    Curr Drug Targets; 2002 Apr; 3(2):155-73. PubMed ID: 11958298
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aspartic proteinases: Fourier transform infrared spectroscopic studies of a model of the active side.
    Iliadis G; Brzezinski B; Zundel G
    Biophys J; 1996 Nov; 71(5):2840-7. PubMed ID: 8913621
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.