These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 8913626)
1. Micropipette suction for measuring piconewton forces of adhesion and tether formation from neutrophil membranes. Shao JY; Hochmuth RM Biophys J; 1996 Nov; 71(5):2892-901. PubMed ID: 8913626 [TBL] [Abstract][Full Text] [Related]
2. Membrane tether extraction from human umbilical vein endothelial cells and its implication in leukocyte rolling. Girdhar G; Shao JY Biophys J; 2004 Nov; 87(5):3561-8. PubMed ID: 15339799 [TBL] [Abstract][Full Text] [Related]
3. Stability analysis of micropipette aspiration of neutrophils. Derganc J; Bozic B; Svetina S; Zeks B Biophys J; 2000 Jul; 79(1):153-62. PubMed ID: 10866944 [TBL] [Abstract][Full Text] [Related]
4. Experimental studies of membrane tethers formed from human neutrophils. Marcus WD; Hochmuth RM Ann Biomed Eng; 2002; 30(10):1273-80. PubMed ID: 12540203 [TBL] [Abstract][Full Text] [Related]
5. Force versus axial deflection of pipette-aspirated closed membranes. Heinrich V; Ounkomol C Biophys J; 2007 Jul; 93(2):363-72. PubMed ID: 17468170 [TBL] [Abstract][Full Text] [Related]
6. Membrane tethers formed from blood cells with available area and determination of their adhesion energy. Hochmuth RM; Marcus WD Biophys J; 2002 Jun; 82(6):2964-9. PubMed ID: 12023219 [TBL] [Abstract][Full Text] [Related]
7. Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Hammer DA; Apte SM Biophys J; 1992 Jul; 63(1):35-57. PubMed ID: 1384734 [TBL] [Abstract][Full Text] [Related]
8. A modified micropipette aspiration technique and its application to tether formation from human neutrophils. Shao JY; Xu J J Biomech Eng; 2002 Aug; 124(4):388-96. PubMed ID: 12188205 [TBL] [Abstract][Full Text] [Related]
9. Finite element analysis of imposing femtonewton forces with micropipette aspiration. Shao JY Ann Biomed Eng; 2002 Apr; 30(4):546-54. PubMed ID: 12086005 [TBL] [Abstract][Full Text] [Related]
10. Human neutrophil surface protrusion under a point load: location independence and viscoelasticity. Xu G; Shao JY Am J Physiol Cell Physiol; 2008 Nov; 295(5):C1434-44. PubMed ID: 18815230 [TBL] [Abstract][Full Text] [Related]
12. Static and dynamic lengths of neutrophil microvilli. Shao JY; Ting-Beall HP; Hochmuth RM Proc Natl Acad Sci U S A; 1998 Jun; 95(12):6797-802. PubMed ID: 9618492 [TBL] [Abstract][Full Text] [Related]
13. A piconewton force transducer and its application to measurement of the bending stiffness of phospholipid membranes. Heinrich V; Waugh RE Ann Biomed Eng; 1996; 24(5):595-605. PubMed ID: 8886240 [TBL] [Abstract][Full Text] [Related]
14. Determination of bilayer membrane bending stiffness by tether formation from giant, thin-walled vesicles. Bo L; Waugh RE Biophys J; 1989 Mar; 55(3):509-17. PubMed ID: 2930831 [TBL] [Abstract][Full Text] [Related]
16. Detachment of agglutinin-bonded red blood cells. III. Mechanical analysis for large contact areas. Berk D; Evans E Biophys J; 1991 Apr; 59(4):861-72. PubMed ID: 2065190 [TBL] [Abstract][Full Text] [Related]